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(Ref.: The Handbook of Groundwater Engineering, Delleur, 2007)
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An unconfined aquifer consists of three horizontal layers, each individually isotropic. The top layer has 03395 T I
— athickness of 10 m and a hydraulic conductivity of 11.6 m/day. The middle layer has a thickness of 4.4 , -

m and a hydraulic conductivity of 4.5 m/day. The bottom layer has a thickness of 6.2 m and a hydraulic
conductivity of 2.2 m/day. Compute the equivalent horizontal and vertical hydrdulic conductivities.

Equation 3.4.5 is used to compute the equivalent horizontal hydraulic conductivity:
Klzl + KEZ'Z + K_’;Zj
LIty
_ (11.6 m/day)(10 m) + (4.5 nvday)(4.4 m}+(2.2 m/day)(6.2 m)
B (10m+4.4 m+6.2 m)

K =

X

=7.25 m/day

The equivalent vertical hydraulic conductivity is computed using Equation 3.4.12:

L.2_ 58
K, Kz K5
I0m+44m+6.2m

" Wm ___44m__ 6Im =GB

1.6 m/day 4.5m/day 2.2 m/day

K. =

Note that the equivalent hydraulic conductivities above are computed based on the assumption that
10 /08 each layer is individually isotropic, that is, K, = K. in each layer. ]




Calculate the groundwater flow per unit width of a confined aquifer in the section between two
== parallel rivers shown in Figure 10.3. The aquifer can be divided into three homogeneous areas
with different hydraulic conductivities: K, = 6.2 x 107" m/s, K, = 7.9 x 10 *m/s, K3 = 4.1 x
10°* m/s. Draw a calculation scheme showing all parameters necessary for the solution,
Determine the position of the hydraulic head (potentiometric) surface on the cross
section. Determine the “equivalent hvdraulic conductivity” and compare it with the average
hydraulic conductivity. Also compare the results of groundwater flow calculation using these
two hydraulic conductivities with the result obtained using the original calculation scheme.

River 2

® ® qu; ®

l—137.4o 137.20

77 Z 7777 River 1
- - - - T - = K-____é A=
s 5 / s 4 / s T | I Ah-]:?
Ki=62x10 "m/s, Ky =7.9x10 "m/s, K5 = 4.1 x | ———— -
., . Ah=64m [ Fan=2 11 7
10 m/s River 2 Li“h_:_? | i I /
VNS

11 /93 B A

[\



m Keqv =
|V _1
3L
i=1 K;
K. = 290 m +320 m'+210 m
e M 290 m 320 m 210 m
+ +
6.2x10 5 m/s ' 79x109 m/s ' 41x10% m/s

ch\; — 1.47 X ]0_4 IT]I.ES

Ah=156.5-150.1=6.4 m;

L=L 1+ 2+ 3=290+320+210=820 m
I=AN/L=6.4/820=0.007805
q=Keq.b.I=1.47x7.5x1.47x10"-4

- _ 7
g =28.58 x107°m/s

) ) River 1
Piezometric surface

g
s R
l / = 196.5
River 2 Z 150'.69 151.15 2
1501 —= !
v . )

© | ® P&

VS LSS S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S

12 /93 Ko > Kz > Ky

A/h =

Al = Ahy + Ahy + Ah;

Ah = i Ah;
i=1

41 = 42 = 43

L

Ay =850 — 535
I
‘?L')

Al = (’7 — 0.46 m
LA

Al q_) > = 0.59 m

hia =hy — Ay = 151.15 m
hg = ha — Ay = 150.69 m
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Figure 3-8. Refraction of the velocity vector at a boundary
between different homogeneous media.

K tan §
2 - d (3-30)
Kb tan 6b ad
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EXAMPLE 3-8
The Darcy velocity

coarse and fine textured ma
K. = 1.6x10'3 cm/s and Kb = ].2x10'4 cm/s.

a

with the normal to the

the coarse material into the fine and ma

(0 )39y T 30

is incident on the interface between
terials with hydraulic conductivities

Flow occurs from

kes an angle § = 30°
interface. Calculate the angle Sy, in

the fine textured material.

Solution: N
FI"DI'FI Eq- 3-30 \( normal £
curve ¢
K -4 subre subregion b
gion a
tan 6b = Eg-tan 6, = 1.2x10_3 tan 30° Kq K
a 1.6x10 q,
)\
i U‘ 0433 ) Figure 3-8. Refraction of the velocity vector_at a boundary
between different homogeneous media.
Hence
§, = 2.5° .
b~ ¢ | 3

It is observed that th
to the interface.

e flow in the fine layer is nearly normal



EQUATIONS OF MOTION IN AQUIFERS: GENERALIZATION OF DARCY’S LAW

Darcy Velocities in Two- and Three-Dimensional Cartesian Coordinates

Equations of motion is given in the Cartesian coordinates for the special case where the principal
directions of anisotropy coincide with x-, y-, and z-coordinate axes. In other words, the Darcy veloc-
ity vector has three components that are aligned with the x-. y-. and z-coordinate axis. These com-
ponents are shown on an infinitesimal parallelepiped volume that represents a point in the flow field
(Figure 4-13).

Equation (4-19) 1s the one-dimensional differential form of Darcy’s law and it states that the
flow rate through porous materials in any direction is proportional to the negative rate of change in
the hydraulic head in that direction. The negative sign in the equation implies that the fluid move in
the direction of decreasing hydraulic head.

Darcy’s law was extended to three-dimensional cases (e.g., Polubarinova-Kochina, 1962;
Hantush, 1964: Bear, 1972, 1979: Freeze and Cherry, 1979). The general form of Darcy’s law 1n a
nonhomogeneous and anisotropic porous medium, with the principal axes of the hydraulic conduc-
tivity tensor parallel to the Cartesian coordinate axes in vector form is

q=¢q,i+gq,j+qgk (4-42)
where q is the Darcy velocity vector, and ¢,. ¢,, and g, and 1. . and k are the Darcy velocity

components and the unit vectors in the x, y, and z directions, respectively. The general, spatially
(Ref.: Applied Flow and Solute Transport Modeling in Aquifers, Batu, 2006)



FIGURE 4-13  Darcy Fﬂlﬂﬂlt}' cumponents under the condition that the pn:nclpal dJ:ectmns of anisotrop '
concide with x, v, and z directions of the coordinate axes.
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For ¢(x,y) = ¥qs where ¥, is the constant representing the
particular streamline through P, we have

dy, = Wogx + Mgy =0 . (4-4)

The coefficients of dx and dy in Eqs. 4-3 and 4-4 must be equal
since dx and dy are the same in both equations. Therefore,

_ 9
qx = = 55::7 5 {4_5)
and
= 3¢
a, o : (4-6)

I? can now @e easily proven that streamlines and equi-
pntgnt1a1 ]1ne5 Intersect at right angles. At point P on an
equipotential line ¢(x,y) = ;5

B |
doy =y dx + 22dy =0 (4-7)
so that
dy =_3Mx=_q_x
( dx )¢ ae/ay qy ' (4-8)

where (dy!dx)¢ 1s the slope of the equipotential line.
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and temporally variable forms of Darcy velocity components in the x, y, and z. directions,

respectively, are
oh(x,y.z.1)

g, = q(x.y.2.0) =— K(x.y.2) gy (4-43a)
oh(x,y,z,1) ;
q, = q,(x,y.2.0) =— K(x,y.2) v (4-43b)
dh(x.y.z. 1)
q. = q.(x.y.2.1) =— K.(x.y.2) d" (4-43c)
In the two-dimensional case, Eqgs. (4-43a), (4-43b), and (4-43c). respectively, take the forms

oh(x, vy, )

g, = g x.v.1) =— K(x,y) I (4-44a)
oh(x, v, 1)

q, = q,(x.y. 1) =— K (x,y) Gy (4-44b)

qg. =0 (4-44c¢)

(Ref.: Applied Flow and Solute Transport Modeling in Aquifers, Batu, 2006)



With the assumption of constant principal hydraulic conductivities, in aquifer hydraulics, it is
further assumed that the principal hydraulic conductivities in the horizontal plane are the same, 1.e..
K((x.v.2) = K/(x,y.2) = K, and K.(x, y, 2) = K_., and Eqs. (4-43a), (4-43b), and (4-43c), respec-
tively, take the following forms:

dh(x.y.z.1) |
qg.=qx.y.2.1) =— K, . (4-45a)
oh(x.y.z.1)
q, = q,x.y.2.1) =— K, év (4-45b)

()
—
—
-
-
|
—
ot

4. = ¢.(x.y. 2.1 == K,——=" (4-45c¢)
In Eq. (4-45¢), K 1s often used instead of K.

(Ref.: Applied Flow and Solute Transport Modeling in Aquifers, Batu, 2006)



Darcy Velocities in Two- and Three-Dimensional Cylindrical Coordinates

Cylindrical coordinate system has wide applications in deriving analytical solutions for circular,
vertical well hydraulics problems owing to the geometric shape of wells. A circular well generally
has a finite radius and 1t 1s assumed that the central axis of the well coincides with the z-coordinate
axis. The radial distance 1in a horizontal plane 1s measured from the vertical axis. Both the Cartesian
and cylindrical coordinates are shown in Figure 4-14. Under extraction or injection condition from
or to a circular well, a radial flow to or from the well occurs. Under this condition, the hydraulic
conductivity K, 1s the only horizontal hydraulic conductivity instead of K, and K, in the x and y
directions, respectively. The vertical hydraulic conductivity K. remains the same. Therefore, the
equivalent forms of Egs. (4-45) take the following forms:

oh(r,z. 1) |
q,=q/r.z.1) =— K, . (4-46a)

dh(r. z. 1) |
q.=q.r.z.1) =— K. gy (4-46b)

[t 1s apparent that the equivalent forms of Eq. (4-46a) in the Cartesian coordinates are Eqs. (4-45a)
and (4-45b). Equation (4-46a) 1s based on the assumption that the principal direction of the hori-
zontal hydraulic conductivity is in the radial direction K and its value is the same in all directions
around the well. The direction of the vertical hydraulic conductivity 1s in the direction of the z coor-
dinate.

(Ref.: Applied Flow and Solute Transport Modeling in Aquifers, Batu, 2006)
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4.3.2.2 Equations of Motion: Principal Directions of Anisotropy Do Not Coincide with
the Directions of Coordinate Axes

Equations of motion will be written for the general case where the principal directions of anisotropy do
not coincide with x-, y-, and z-coordinate axes. These components are shown on an infinitesimal paral-
lelepiped volume, which represents a point in the flow field shown in Figure 4-15. The Darcy velocity
components of the vector q given by Eq. (4-42) are (see, e.g., Bear, 1972; Domenico and Schwartz, 1990)

oh oh oh
Qo = Kﬂﬁ — Kng — K‘:EJ_E (4-47a)
oh oh oh
Ay =~ KJ'IE B KHE B de_: (4-47b)
oh oh oh
4. == K.5- ~ Kﬂ-a—}] —K.3; (4-47¢)
where x. y, and z are the Cartesian coordinates and K . K. ..., K__are the nine constant components

of the hydraulic conductivity tensor in the most nrenem] case. The nine components in the matrix
form display a second-rank symmetric tensor known as the hydraulic conductivity tensor (Bear,
1972). In Eqgs. (4-47), the first subscript indicates the direction perpendicular to the plane upon
which the Darcy velocity vector acts and the second subscript indicates the direction of the Darcy
velocity vector in that plane. If the principal directions of anisotropy coincide with x. v, and z direc-
tions of the coordinate axes, the six components K. K, . K, . K . K . and K_ become equal to zero,
and Eqs. (4-47) reduces to Eqs. (4-43) for K (x. y. 7) = K K (x. V.2) = KT. and K_(x,y.2) = K.

(Ref.: Applied Flow and Solute Transport Modeling in Aquifers, Batu, 2006)
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The governing equation for flow through a porous medium is traditionally derived by
referring to the flux of water through a cube of porous matenal that is large enough to be
representative of the properties of the porous medium yet small enough so that the change
of head within the volume is relatively small (Fig. 3.1). This cube of porous matenal 1s

known as a representative elementary volume or REV, with volume equal to AxAyAxz.

722

2

(Qy)in

Figure 3.1 Representative elementary volume (AxAyAz) showing the components of flow along the
y-coordinate axis.



The flux through the REV, q, is a vector whose magnitude is expressed by three
components, gy, 4y, and g.. Formally, we write:

q = quix + qyly + gzlz (3.1)
where iy, 1y, and i, are unit vectors along the x, y, and z axes, respectively. Conservation
of mass requires a water balance within the REV such that,

outflow — inflow = A storage (3.2)

Consider low along the y-axis of the REV 1n Fig. 3.1, Inflow occurs through the face
AxAz and 1s equal to (gy)in. Outflow is equal to (g,)ouT- The volumetric outHow rate
- minus the volumetric inflow rate along the y-axis is:

B [(@y)our — (4] AxAz (3.3)
| ~ which can be written as,

(Qy)QUT - (4}')]}1 (&xﬁyﬁz)

(3.4) {‘

Ay
' > ;{ ' Ted .
Dropping the IN and OUT subscripts and converting from difterence notation to a "‘ 0 f‘- W 1T
~derivative, the change in flow rate through the REV along the y-axis is: 0 % o
Jq it oy AT
a_; (AxAyAz) (3.5) o 45
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Similar expressions are written for the change in low rate along the x- and z-axes.

Using Eqn (3.2), the total change in flow rate 1s equal to the change in storage:

c'i{g_\. + d {I}.- d =

Ox a}_. . 0= &x‘}‘_}f—\: — :ﬁ.‘it{)l‘agc {:)}_(}]

We must allow for the possibility of a sink (e.g., a pumping well) orsource of water (e.g.,
an injection well or recharge) within the REV. The volumetric inflow rate from sources and
sinks 1s represented by W AxAyAz, where we use the convention that W* is positive
when it 1s a source of water. As a source of water, 7™ is subtracted from the left-hand
side of Eqn (3.6) (notice the minus sign in front of inflow 1n Eqn (3.2)), resulting in:

{fiq_\. n éiq}_. {fiq:

ax | dy T Py W* ) AxAyAz = Astorage (3.7)

Now consider the right-hand side of Eqn (3.7). Change 1n storage is represented by
specific storage (S;), which 1s the volume of water released from storage per unit change
in head (h) per unit volume of aquifer:

AV o
= — (3.8)
AhAxAyAz

sk Y
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The convention in Eqn (3.8) 1s that A Vis intrinsically positive when Ah 1s negative, or
in other words, water is released from storage when head decreases. The rate ot change in
storage in the REV is:

AV Ah
— = —S—AxAyAz (3.9)
At At

Combining Eqns (3.7) and (3.9) and dividing through by AxAyAz yields the final

form of the water balance equation:
dg.  dq, dq-

: : — — W = —S— 3.10
dx U dy U dz “dt ( )

This equation 1s of little practical use, however, because we cannot easily measure q.
We want a governing equation written in terms of head because head is an observed
quantity easily measured in wells. Darcy’s law (q = —K grad h) relates specific discharge
(q) to head (h) where grad /i 1s the gradient of h. Both q and grad /h are vectors and K 1s
the hydraulic conductivity tensor (Box 3.1). The components of the specific discharge

VECTor, q. dre.

33



dx
dh
dh
q= — _Kza

where K, K, and K; are the principal components of the hydraulic conductivity tensor
K and 0h/0dx, dh/dy, and dh/0z are components of the vector grad h, the gradient of
head.

Equation (3.11) is substituted into Eqn (3.10) to give the general governing equation
(ditterential equation) representing three-dimensional (3D) transient groundwater flow
- for heterogeneous and anisotropic conditions:

9 9 o ([ _on\ _oh
(K"_) o7 (Kyay) 5= az) o o)

The vanable of interest, h, 1s the dependent varable, while x, y, z, and t are the 2432408
independent variables and K, K, K-, S;, and W are parameters. The subscripts on K= :
- denote anisotropic conditions (Box 3.1), meaning that hydraulic conductivity can vary =~
- with direction, x, y, and z. The placement ot K within the difterential signs allows for 3%
b2 5e spatlal variation (heterogeneity) in hydrauhc conductmty
SRR Y L LTTHEE -




Equation (3.12) assumes that the principal components of the hydraulic conductivity
tensor (K, K, K,) are aligned with the coordinate axes x, y, . When this is not the case,
1t 15 necessary to use a version of the governing equation that includes all nine compo-
nents of the hydraulic conductivity tensor, rather than just the three principal compo-
nents mn Hqn (3.12) (Box 3.1).

Equation (3.12) 15 used in most numerical groundwater low codes. The equation sim-
plifies when the problem is steady state (3h/dt = 0) and/or when two-dimensional (2D).
For 2D honzontal flow through a confined aquiter, vertically integrated parameters,
1.c., transmissivity (1) and storatvity (S), can be defined. Then the components of trans-
missivity in the x- and y-directions are T, = Kb and T, = K,b, respectively, where b is
aquifer thickness; S = Sb. The sink/source term, W, in Eqn (3.12) becomes a flux,
expressed as volume of water per area of aquifer per time, R (L/T). Under these condi-
tions Eqgn (3.12) simplifies to: (R=W*.b)

d d d dh el
I T‘@ + d_}’ T}_.a—y = ha — (3.13a)

For 2D horizontal low i an unconfined, heterogencous, anisotropic aquiter, the
differential equation is:

a ([ _ dh d [ . dh _dh
E R_tha 4 G'_}’ I\},.hay = b}_.g —

R (3.13b)

where S, 1s specitic yield and R is recharge rate. Here, head (h) is equal to the elevation of the
water table measured from the base of the aquiter. 2D horizontal How, expressed by Eqns
3.13(a) and (b), represents low under the Dupuit-Forchheimer approximation (Section 4.1;
Box 4.1). For steady-state flow with no recharge (R = 0) in a homogenous and 1sotropic
aquiter, Eqns 3.13(a) and (b) simphty to the well-known Laplace equation (Section 3.4).
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Piezometric head (level)
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ah_ _ch
dx?
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Example — Varying Thickness

Determine the hydraulic head distribution in the confined aquifer below. Aquifer is
homogeneous isotropic and steady flow conditions. (after Hantush, 1962).

o _ oh T / >
) (Tx —) 55 O, ipermeable
OX = OX
M
) (K b, 8_h) = h1 b=bye™
OX OX | i h2
b0 —
h(0)=h, h(L)=h,; and y’ ///
PRESEr = ¥ 2% // Lo
0 X
2
5 d ? 5 db dh N
dx® dx dx

2 - X
d?—cdhzo ~h=Ce"+C, =h=h| " hZL)(e )
dx dx (e™ -1
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-qudz + f(x) = -q, 2

The streamlines corresponding to ¥=9y are horizontal Tines,

parallel to the x-axiz. It is clear that the streamline 4=0
is the lower boundary of the aquifer, and any other value, ¥y

equipotential lines
X-y plane)

at Z;s represents the negative discharge rate between the

streamlines L P and =0, per unit of aquifer width measured
along y.

(x-z plane)
streamlines
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Figure 3-16. Flow in a leaky, corifined aquifer.



3°h , 3%h ., W _ S sh
+ ter s e, (3-76)
ax2 a2 DK BK 3
W=W* b=R

The vertical percolation rate W is a scalar discharge per

unit area assumed to be positive under conditions of accretion.

The magnitude of W can be computed directly from Darcy's Law,

provided that changes in Storage in the aquitard are neglected
(see Examples 3-6 and 3-7):

(h, = h)
W = Ka ba . (3-78)

Substitution of Eq. 3-78 into Eq. 3-76 gives

?_2_]1 . 2 Ka (hD - h) ) S Bh (3-?9)
sz K bba bK 5t ’

3__£1_+
3y

A leakage factor B, defined by

43



is often introduced 1nt0 Eq. 3-79 to

equation

o-h

(3-80)

yield the Zeaky aquifer

_5_.._'1
bK 3t

(3-81)
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The Dupuit-Forchheimer Approximations -

The difficulties attending the solution of Eq. 3-64, or
appropriate less general forms, in water-table aquifers have
led hydrologists to use a more practical, if less rigorous,
approach. Consider a sloping water table above a horizontal
impermeable boundary as shown in Fig. 3-14. The slope has been
greatly exaggerated for clarity. The discharge, per unit width
into the plane of the paper, across any vertical plane is

Zf
Q=7 qx(x,z) dz . (3-65)
' 0

Evaluation of the integral in Eq. 3-65 requires that qy (x52)
be known. However, provided that the slope & of the water table
is small, qx at the water table does not differ significantly

from that on the impermeable boundary and q, (x>2)%q (x,z.).
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q, | Assumed Constant
= ‘ — Head Line
3 !
q I
' Actual Constant
| Head Line
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)
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In this case = R B - Q'g:’qT 290 Ob & dolxe

( dn
Kax Z¢ (3-66)

Q= q,(x.2) 2 =
where h is the p1ezometr1t head at the water table. By defin-
ition of a water table, the pressure head must be zero there,

S0 h=z. and |
Q= -k . (3-67)

In Eq. 3-67, h represents both the thickness of the flow
and the piezometric head at the water table. The guantity
dh/dx is the tangent of the angle the water table makes with
the horizontal. Equation 3-67 actually implies that the flow
is entirely horizontal, and that the pressure-head distribution
along any vertical is hydrostat1c In other words, the piezo-
metric head a]ong any vertical is constant. It is emphasized

that Eq 3-67 is valid for situations in which the water-tab]e
slope is small. More explicitly

(dh/dx)2 < < 1 (3-68)

" )
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The Boussinesq Equation

09 BT w38

The Dupuit-Forchhiemer assumption of horizontal flow per-
mits the use of a material-balance control volume that extends
from the horizontal floor of the aquifer to the water table
(Fig. 3-15). Because changes in water density are unimportant
in unconfined aquifers, mass balance is assured by a volume
balance. Following the procedures of the previous section,
the rate of net outflow from the control volume is

BQ 2Q

- X _Y _
Net Outflow Rate = —= ax + v N (3-69)

From Eq. 3-67, written for both the x and y directions in an
isotropic aquifer,

Net Qutflow Rate
AXAY

= - 2 (xn 3*‘ ) - L (Kh ). .(3-70)

As before, the net rate of outflow must equal the negative
time rate of reduction of stored water volume. The change in
water volume associated with a change, dh, of water-table
level follows froim the definition of apparent specific yield
discussed 1n Chapter 11I.

aV

W_ o oh ' _
3T Sya 5t AXAY . o (3 71) ad
g Combining Eqs.-3-70 and 3-71 yields | | Bt Py
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%
Water Table gt t o v } _dV=AxAydh

War;;.r Lable at dh A5
+ ?\ ] ?_H(f { Qy

7

T Y Y Y

Figure 3-15. Contro] volume in an unconfined aquifer.

2 (kn 5‘")+3 (kh 2Dy = ¢ Mo (3-72)

oy ya 3
and, if the aquifer is homogeneous, a0
S
-3— -%. ah = _ﬁ ﬁ_’l . _ bl o B L)
9X (h X ) (h 3y ) K ot . (3 73) e
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Example:

K=101cm/sec
h,=6.5m
h,=4m
L=150m

Find Q

__Kfh-h)__
-

e "?,if} f
Ground Surface o
- Water Table
“
7 i
A, ! Flow ,
7
h 2
7 ;
._ 7 hz
fa :
R R R R R R e Y L N Y L N Y X N R L N e e N W X N IR NN iw
Bedrock /
X

86.4m/d( 6.5° —
2 150

42
j:7.56m3/d/m
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d ; (h : ) W W, Infiltration

o
>
N
N
v

: ,-=??Fﬁf::-’*’{jﬁ?:?;;{ﬂ::if:faﬁ::::fﬁ:::fc:::m:::%ﬁz:%ﬁm::fﬁzg;
= Ground Surface
o
2 2 é Water Table
h*(x)=h"+| - n X+—(L—x)x f ?_
L K .
2 ?’ﬁ h Fl i Flow
= K d (h ) /71 ? ow ::_’_
O(x)=—— ,
I8 dx é
% % h,
d h 2 h 2 > h12 W SN Y _';.H‘:a-.:{ N N
—_— ezt 1 _|__(L_2X) Bedrock /
dx L K X

e K

h2_ 2 b Lot R 2 12
Q(X) =-K 22—th -W (% — X) Xdivide 2 = WL (hg h1 )
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Example GO0 S b (S &0 b >

W, Infiltration

e GGj )

Iven “ Ground Surface E:_

/ =3000 m : Water Table ’

7

K=20 m/day .

h,;=30m N Kz

A x Flow :

= 1 7

W= 500 mm/yr - 7 h,
W=0.00137 m / day = f;h:;.. {h{;.-~-.{a{\.:-*-,(h{\,:*-ﬁ-*-,fﬁ-‘--f_*f\-"-{xz‘\-"'-<"*~f“~.:'"w"\{'\-:"ﬁ"‘wfﬁ""ﬁﬁ""{*‘f“t‘ T AT
earoc
X

* Find: Flow to the streams and shape of water table
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20 0.00137x 3000
Q(O) = 2 s 3000 (302 F 202) =3 & W, Infiltration
—-0.388m3/ day /'m e
- Ground Surface
’{E Water Table
0L 20 (30 _ 2g7) , 0.001373000
2x3000 ,
=3.722m*/ day / m , _ A
%z‘WtWaﬂ“iM‘MW:WH:W\W T
3000 20*(=500) secrock z
Xdivide = a3 = . X
2 2% 350
=283.5m
0.00137

max

2 an?
h_ =(30%+ ( 2030030 ]x 283.5+

(3000 — 283.5) x 283.5)*° =30.0916
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Discharge
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- Radius of
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(2) ('o Q
\&/ ./ W
I I 4
l | s : :
TETHE N TE TIRSTIETIETE (ST TIE T E s TE ,r;;/ Initial piezometric
e | t . surface
S{r)— ~
| R .
- T \d Piezometric surface
' ; g @(r)
|
- N WEAVLANE B UENENTETLE SN
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r, = radius of well

b = height of aquifer

h, = depth of water in the well
H = Initial piezometric surface

s(r) = drawdown at some radius, r

@)=

»
’

piezometric head at some radius, r

" O, r
o(r)=nh, +:7;rkhll] :
O = 27l (hy, —hy)

- In| 2
h

(0 )39y T 30
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(2) () Qy
" }
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_. - R A 7 A - PSS //'/S///S ///5 ///S /// l"lllla| pleZO'f‘e[flC
. e, surface
s(r) — SIS

~ :
Piezometric surface

" : 5 &(r)
;-/ f&_\W\&.\\\&\\\%M N A A RN AN W

I

h, f o = /§;
v, [ = = 27l (h, —h)
-] - ()‘ — :
& j < W 2
ETETIETT ,Lymg—,/}r'/ S T T E THE TUE TS TN ETIETY ln ’3
—r —i r,

e A confined aquifer has hydraulic conductivity of 20
m/d, thickness of 6.6 m, and initial piezometric surface
of 14.53 m above the lower confining layer.

— What flowrate will cause the piezometric surface to be 13.85 m at
a radius of 40 m and 14.31 at a radius of 85 m?

— What is the water depth at the well if the well diameter is 0.50 m? ad
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Steady Well Flow: Unconfined Aquifer

‘.\‘ B s
1
L N T T — —

r, = radius of well /‘Z'/\'(/l_{ - hl )
H = height of aquifer 0, =

| S
h, = depth of water in the well In| =
H = Initial phreatic surface A
s(r) = drawdown at some radius, r

A
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Dupuit's Formula

K h3

h
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-
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O
ln(

2
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|

‘where
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e Awell pumps 0.4 m?/s from an unconfined aquifer whose
saturated thickness is 24 m. If the drawdown 50 m from
the well is Im and the drawdown 100 m from the well is
0.5 m, then:

(a) calculate the hydraulic conductivity of the aquifer.
(b) Determine the expected drawdown 5 m from the well.

{ 1) (‘A
LY N s IniLal phreatic

- surface
TR T T E T TVETTETR

—_— 7K (hy" —h°)

{5
/i
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(b) drawdown near real well.

67 /93

09 BT w38

09y (S0 90 Sy

(9) Sls

a5 ol g Sl -F IS
Sloay dlivss jo awlag, L

&5, u-ii")’.)b




J{ CHET @ojs 3 35.0.3
Pumped
Well x .

O e
| Stream
|~

Plan View
Q

| :

| V*Drawdown

N I R B

. - Confined
—— —— Aquifer

AN R R T T T T T T T T ETEE T R EEE R EERBRRRRRERRTIRRRRBRRRERERRR TN
L——— d

Section View
b o Ol il 53 6l g, (S35 53 ey alis 0dd o3l p 5V Y-F S



SAERERRRRTRRRTRIRREEER

2,2 2a-r Q 2a
_Q (a+x)"+y" % = -3_ sn LA n
E,ETEH r‘_lfr 5T Ln{ (ax) +y2 } Sy = a7 ( . 2wl L
i ]
buildup due
Drawdown =O\ to recharge -
.-!""‘/f
stream _____||--——————""~ i
level || ¥ | Se——-—F=="
~=—_ H””_,_,.-—--'P\
""m\ ~~-X net drawdown due
N\/lg~~ drawdown to pumping
NANN ALALEATATALERERRARARE ATERRRRERRRTSRRLARRSRASS §SGARRRRRRSS
a e -Q
AMUHEER RREHTERTEEEEESER

ALHELLL TR R TR TR TR TRT®TTITTEEEEEEE S

ool Ll 315 4 ds 5 Slay s ol 1 ol 5 CENY-F S



70/ 93

EXAMPLE 4-4

Derive an equation for the family of equipotential lines
for a pumped well located a perpendicular distance a from an
infinitely Tong, fully penetrating stream with constant and

horizontal water surface.

Solution:
From Eq. 4-35, the velocity potential function is

0 = 5% 1 1aislfiz;
2m (a

5
> + constant
-X)"+y

Putting the arbitrary constant equal to zero, noting that ¢=¢i
on an equipotential contour, and exponentiating yields

+y~+2ax+a
ATy ax = EXP( q } = C'i .

x2+y2-2ax+a2

where ¢; is a constant corresponding to - Rearranging and
completing the square results in
1+c

1+c.
X 1,2 Yy _ o __Ti2
( 3 =, )"+ (%) ( T=c, ) 1T,

which represents a family of circles in the dimensionless coord-
inates (x/a, y/a) with the centers at x/a = (T+¢;)/(V-c;),

y=0 and radii {(1+c;)%/(1-c,)? - 1™,

It is left for the student to show that the streamlines
are also circles. The network of equipotential and streamlines

is shown in Fig. 4-11.
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EXAMPLE 4-5
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Verify that the total discharge from the stream to the

aqujfer is equal to the well discharge for the steady flow
depicted in Figs. 4-7 and 4-8. '
Solution:

The discharge dQ5 from the stream into the aquifer on
a reach of length dy follows from Darcy's law:

dQ_ = q bdy = T 28| gy
s X ax x=0
The drawdown is
r. 2, 2
5=_c3._£n_l=.ﬂ_£ﬂ{_(ﬁLtL}
2nT r 44T {a-x)2+y2

which follows from Eq. 4-35 and the coordinate system indicated
in Fig. 4-7. Calculation of the partial derivative of s with
respect to x yields

o . 0 ()P’ [ 20(a0feyPh(xra) + 2((xta) 4y Haz)
T (xra) 2y ((a-x)2+y")

At x=0, the result is

3 =92y |
ax x=0 ol a2+y2

and the differential discharge from reach dy becomes
-0 _a
Qg = = 5 5 dy

The discharge from the stream to the aquifer is obtained by
integrating over the reach of stream extending from -= to «:

"mﬂ+y 0
from which Q5=Q as required. QQ:>%yE¢i%
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A Pumped Well In Uniform Flow

Superposition can be used to determine the flow pattern
for a well placed in an aquifer in which one-dimensional uni-
form flow occurs. The equations for the streamlines are obtain-
ed by adding the ¢ functions for uniform and radial flow. The

stream function for one-dimensional, uniform flow in the x-di-
rection is

¥ = -q y + constant = Kiy + constant (4-37)

where i=dh/dx has been introduced for simplicity in notation.
Note that i may be positive or negative depending upon the
coordinate system selected. Adding vy from Eq. 4-37 and 4-26
yields

p = Kiy + §§E~ﬁ + constant (4-38)

which is the stream function for a well in uniform flow. The
flow pattern in the upper-half plane is shown in Fig. 4-12.
The flow is symmetrical about the x-axis.

Recall that the numerical difference between any two
values of constant y is equal to the discharge per unit of aqui-
fer thickness between the two streamlines. Selecting the arbi-
trary constant in Eq. 4-38 equal to zero, it is evident that y
is Q/2b when y=0 and &=w. Thus, the entire negative x-axis is
a streamline for which y=Q/2b. It follows that one-half of the
well discharge must flow between the streamlines ¢=Q/2b and y=0.

C 950 Ol = 90 ol



Furthermore, the streamline for which =0 must separate flow

that eventually contributes to well discharge from flow that

bypasses the well. The streamline y=0 is called the ground-

water divide (Fig. 4-12). The relationship between the x and
y coordinates of all points on the ground-water divide is

Kiy = "E%E s (4-39)

where 5=tan-1(31x) for x>0 and ﬁzu-tan'1]ij| for x<0. For the
coordinate system shown in Fig. 4-12, the slope i of the piezo-
metric surface in uniform flow is negative.

The point at which the ground-water divide streamline
crosses the x-axis downstream of the well is called a stagna-
tion point because the Darcy velocity is zero there. Water on
the x-axis upstream of the stagnation point moves toward the
well, while water on the x-axis downstream of the stagnation
point moves away from the well. The coordinate x_ of the

S
stagnation point is obtained from
x. = limit [ Y 7=--9_ | (2-40)
Far upstream of the well,(as x»-« and 6§+xw) Eq. 4-39 yields
-, 9 _
Y = £ 5y (4-41)

which is the half-width of that portion of the aquifer in which
flow contributes to the well discharge.

The distribution of piezometric head is calculated by
adding the heads for radial and uniform flow. From Eqs. 4-12
and 4-23

- - Q i,
» q,.X + b £n r + constant (4-42)
or
h = ix + 73 ea(xP+y®) + constant . (4-43)

oS 1950 Ob > 90 ol



EXAMPLE 4-7

Contaminated water from several waste-holding ponds seeps
into an aquifer in which uniform flow exists. A well is to be
constructed 300 m down gradient from the ponds in an attempt
to intercept the contaminated ground water. The slope of the
piezometric surface is -0.022 and the transmissivity is

0.013 mzfs. The width of contaminant source area is 200 m,
measured perpendicular to the direction of ground water flow
(Fig. 4-13). Compute the well discharge required to intercept
the contaminated ground water, assuming no dispersion. Assume
further, that the discharge of contaminated water into the
aquifer is small compared to the discharge through the aquifer.

rm\v
Direction _ é D_,_ 300m /-(L-\a

of Fiow X
Hh”,///

L Waste Ponds

Figure 4-13. An interceptor well downstream of a source of
ground-water contamination.

Solution:

The significance of the second assumption in the prob-
lem is that the discharge of contaminated water is too small
to significantly influence the pattern of flow and that the

quantity of contaminated water added does not appreciably alter’

the discharge per unit area in the aquifer. Provided lateral
dispersion is negligible, the contaminated water will be inter-

cepted if the ¢=0 streamline passes through the extremeties of
the line of waste ponds. The coordinates of one end of the
Aing on which contamination occurs are (-300,100). From Eq.
-3:

Q:_Zﬂ—ﬁ-y_
G >
wherein & is the angle indicated in Fig. 4-13. Hence,

m-tan”' ( 390 )

2.82 radians.

8

The required discharge is

q = ~22(0:013)(-0.022)(100) . ¢ gg4 n¥/s

133
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4.4 FLOW NETS

Thus far, analytic methods for obtaining solutions to the
Laplace equation have been presented. It is apparent from the
previous discussions that boundary conditions must be relative-
ly simple in order to obtain analytic solutions even using
superposition. Another solution technique which may be used
is a graphical method known as the flow net.

Flow Nets In Homogeneous Aquifers

A flow net consists of a network of equipotential lines
and the corresponding orthogonal streamlines (Fig. 4-11). From
a properly constructed flow net one may obtain distribution of
heads, discharges, areas of high (or low) velocities, and the
general flow pattern. In addition, flow nets offer an excel-
lent means of gaining insight into the general characteristics
of ground water flow.

Referring to Fig. 4-15, the flow channel between adjacent
streamlines is called a streamtube. The discharge in the -



streamtube per unit width per- Qb)? 6& M

pendicular to the plane of the o *
figure 1is J

AQ = ¥, = ¥y = Ay (4-45)

D,
and the Darcy velocity is "% %
> ¥,
q = AQ/AB = Ay/AB .(4-46) v 2
Darcy's Law gives, for this
figure,
®,-0 ¥
KAh 2 "1,_ Ad
a4 = =g =ag ) Ay (4-47) I

Figure 4-15. A flow net element
where & = Kh. If the flow net for two-dimensional flow.

is drawn so that AR is equal to

AB, then the flow net reduces to a network of "squares" which
can be easily identified by visual means. In addition, since
continuity must be satisfied, then

q = AY/AB = Ad/AR (4-48)
and the increment Ay must be equal to A¢.

The first step in the solution of a flow problem by flow
net construction is to draw the two-dimensional flow domain to
scale so that all boundary locations, wells, etc. are in the
correct positions, relative to one another. A trial and error
procedure is used to sketch the flow net. The following rules
aid in minimizing the number of trials needed to construct a
proper flow net:
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a) Equipotential contours and streamlines are orthogonal
at points of intersection.

b) The flow net is constructed so that the spacing AB
between streamlines is equal to the spacing A% between
equipotential lines for each element of the net. In
this way the flow net is constructed as a set of curvi-
linear squares of appropriate sizes.

c) All boundary conditions must be satisfied by the net,
e.g., constant head boundaries or impermeable boun-
daries.

d) Take advantage of apparent symmetry (if any) by begin-
ning the flow net construction around lines of symmetry.

e) Use no more than 4 or 5 streamtubes in the first trials.

The total discharge through the aquifer is (by Egs. 4-
4-46, and 4-47) ) ; (by o -

Q =n.aQ = ngay = n A% = n_Kah | (4-49)

where ng is the number of streamtubes and Ah is the head loss

along the streamtube for one element. The head loss along a
streamtube for each element is given by

H
t
ﬁ;‘ : (4-50)

Ah =
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where Ht is the total head loss determined from the boundary
conditions for a streamtube and n, is the number of equipoten-

tial drops determined from the flow net. From Eqs. 4-49 and
4-50, the discharge is

nS
Q': K"—H (4-5]:1

2 t

For a particular problem the ratio nSKHR is a constant. Only
by coincidence is n, an integer when an integer number of
streamtubes is used at the outset.

The above procedures and equations permit one to determine
discharges and potential distribution in cases in which the
aquifer is homogeneous. Flow beneath impermeable dams and

under cut-off walls are common cases that are analyzed by these
methods.



EXAMPLE 4-9
Using the flow net method, estimate the discharge under
the sheet piling shown in Fig. 4-16 for K=2.511D'5 m/s and

Ht=2 m. Note that the sheet piling penetrates to 1/2 of the
aquifer thickness.

Figure 4-16. Flow net for seepage under a sheet pile (Adapted
from Polubarinova-Kochina, 1962).

n -5
S H_ = 2.5x107(

Q =K ¢ %ﬁ )(2) = 2.5x107° mgjs

3
2
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EXAMPLE 4-10
Calculate the seepage discharge beneath the dam and cut-

off wall shown in Fig. 4-17. The hydraulic conductivity is
15 m/d and Ht=1[] m.

l-—lOm- 20m ——| Potential Distribution
.~ under Dam
. V. S
"'-.._______E ‘
IOm

Figure 4-17. Flow net for seepage beneath a dam with a cut-off
wall. '

Solution:

A flow net is also shown with 9 equipotential drops
and 3 stream channels. The discharge per unit width perpendic-
ular to the plane of the cross-section is

n

3
_ _ 3 _ m
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contours of
groundwater
surface

500 m

Figure 3.6.5. Contour map of a groundwater
surface showing flow lines.
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Figure 3.6.8. Map of
Baltimore industnal area.
Maryland, showing poten-
tiometric surface in 1945
and generalized flow lines
in the Patuxent Formation,
From Bennett and Meyer’

(as presented in
Lohman®).
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Groundwater

e e ¢ "o . . "
REC o o wt #' "0, ‘'wmob,

Flood stage

Low flow —/
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Figure 1.9 River—aquifer interaction: (a) effluent stream, (b) influent stream, (c) influent
stream (deep watertable), and (d) bank storage.
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Groundwater contours are shown on the following map along with the
course of a river. Determine the river reaches along which the stream

09 BT w38

- behaves like an effluent and influent stream. Use the data that have
been provided on the map for your analysis.

Watertable contour map

We construct typical cross sections of the phreatic surface across
the river. Locations of these sections are identified on the map, and the
cross sections themselves are shown in the following drawings. Cross
sections, section 1-1 and section 2-2, show that the phreatic surface
dips away from the river to the aquifer. Thus, along the reach from
section 1-1 to section 2-2, the river behaves like an influent (loosing)
stream. Likewise, sections 3-3 and 4-4 show that the phreatic surface
slopes toward the river, indicating seepage from the aquifer into the
river. Thus, along the reach between these two sections, the river
behaves as an eftluent (gaining) stream. It may be further observed
that influent streams flow over the ridge of the groundwater surface,
while the effluent streams flow along the valley of groundwater sur-
face. Thus, a study of the contour map shows that the river reach
from A to B and from B to C behaves, respectively, as the influent and 91

91 /93 effluent stream.

u}'_,ﬂnfl‘y’-/f:
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ILLUSTRATIVE PROBLEMS

93 /93

A well is located at 500 m from a long, straight constant-head bound-
ary aa. The aquifer is uniformly isotropic with coefficient of per-
meability K=0.00014 m/s. The steady-state piezometric levels at
observation wells, A and B, are 20 m and 19 m, respectively, as shown
in the following sketch. If the aquifer remains confined of uniform
depth H=8 m, find the following:

(a) The piezometric level in observation well located at P(1000, 500)
(b)  The steady (not changing with time) discharge O

y-axis

any, P(1000, 500
(= 1000 m —a-(;rj )
I
o
§ il A 500 m
2 | t -axi
E'" ] L ] W— O e W-AXIS
2 IE
ks
“ I 500 m 1000 m
" -
al
Well Q
l ‘
J !
| L.
'| H=8m llm )
RN AN FAWN 7 AN

Impervious boundary
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Part (a): This is a problem where the well is situated near a long
constant-head boundary. The potential @ is in general found from the
following equation:

{Dzi]n n + iy (IP5.1.1)

21 ra

Since the aquifer remains confined, the preceding equation can be
replaced by the following equation:

D:L—J]n[i}-i- Dy (IP5.1.2)

where
¢ represents the piezometric level at the movable point Pix, v)
r, and r, represent the radial distances from the well and its image
to the point P(x, v), respectively
¢, represents the piezometric level in the observation well A (or the
level in the perennial river)

At observation well B, the following information is known:

r,=1000 m
r,=2000 m
Gz=19m

0y =20m

Substituting the preceding information in Equation IP5.1.2 yields the
following:

) e 1
19 = ¢ In 1000 + 20 (IP5.1.3)
2nKH 2000

ol



09 BT w38

From Equation IP5.1.3, the following can be obtained:

0 19 —20
2nKH  In(0.5)

=1 44727 m (IP5.1.4)

At point P(1000, 500), the tollowing data can be easily obtained:
ry=707.107 m
r,=1581.14 m

0y = 20m

Thus, substituting the preceding values in Equation IP5.1.2 vields the
following:

707107

0p=14427 In| —
1581.13

}+ 20=1884m.

Part (b): The steady-state discharge can be obtained from Equation
[P5.1.4 as follows:

O=14427 mx2nxKxH=14427 m=x2rmx=x0.00014 m/s=x 8 m
=0.010 m?/s. e
95 /93 g
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Example Calculation

The following example applies this form of the hydrologic
budget to calculate safe yield for a project in northemn Iran
(4) (Figure 20.3).

The time period chosen for the water balance was the
four-year period of 1969 to 1972, and it was considered
representative of mean geohydrologic conditions.

Ground Water Inflow, Q;. The inflow term was calculated
as

Qi = (LYK b}(%} = 70,542 acre-ft/year ,
x

where

@; = flow of ground water moving across a section L
{normal to the flow path) having an average trans-
missivity T(Kb = T) under a hydraulic gradient
of Ah/Ax.

The recharge area originates at the southem boundary
(foothill zone) of the area of investigation. Values of average
transmissivity for the area were obtained from aquifer test
results correlated with a geophysical resistivity survey. Hy-
draulic gradients were obtained from water-level contour

maps, and cross-sectional areas were drawn parallel to equi-
potential lines.

Ground Water Outflow Qp, Ground water outflow across
the northern boundary (near the coast of the Caspian Sea)
consists of the sum of the outflow from the water table and
the deeper confined aquifers. However, as the upper aquifer
water-level contour maps show little-to-no outflow, the es-
timate was based on the deeper aquifers only. The total
subsurface ground water outflow across the northem boundary
was estimated as 5676 acre-ft/year.

o
Dushanbe

Scele in Kilometers
1] ; la 15 20

Figure 20.3. Location map of project area
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Conveyance Loss, Qy, Some water diverted for irrigation
is lost during transit and percolates as recharge to the upper
aquifer. The conveyance water loss was assumed to be 15%
of the total volume of water diverted for irrigation (204,330
acre-ft'yr as measured at the main diversion located at the
base of the mountains). Of this, 15% is the conveyance loss,
or 30,649 acre-ft/yr.

Effective Precipitation (EP). In areas where the ground
water table is reached by plant roots or is so shallow that
the capillary fringe extends to the land surface, the amount
of water discharged by transpiration through plants and
evaporation from the land surface is the “‘potential evapo-
transpiration” of that area (5). The effective precipitation or
infiltration is that portion of the precipitation that actually

TABLE 20.1 Potential Infiltration and Evapotranspiration
Constants

Potential Potential
Depth to Shallow Evapotranspiration Infiltration
Ground Water (ft) Constant, Constant, B
=3 0.4 0.1
3-15 0.1 0.5
=15 0 0.8

Mote: a and B empirically determined for the area (14).

reaches the phreatic water surface. Its calculation involves
subtraction of potential evapotranspiration (PE) from potential
infiltration (PI). Potential infiltration is estimated by adjusting
residual precipitation for soil moisture deficiency and depth
to the water table.

In the study area monthly precipitation records were
available at two stations. After adjusting for soil moisture
deficiency and interception, the average value of residual
precipitation was 8.67 in./yr.

Potential Infiltration was then calculated from

Pl = PRA = 113,679 acre-fuiyr

where

PI = potential infiltration [acre-ft/yr],

P = residual precipitation [ft/yr], 0.723 ft/yr,

B = empirical infiltration factor (function of depth to
ground water; see Table 20.1),

A = total area, 338,567 acres.

Potential evapotranspiration was calculated in a similar
manner:

PE = 3.445'aA = 178,221 acre-ftiyr ,

where
PE = potential evapotranspiration [acre-ft],
o« = empirical evaporation constant (function of depth

to water table, see Table 20.1).

Effective precipitation (EP) is the difference between po-
tential infiltration (P1) and potential evapotranspiration (PE):

EP = Pl — PE = —064,542 acre-ft/yr .

The negative sign signifies a loss from the ground water
reservoir.

1. The average of pan evaporation values in the area is 3.445 fufye
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Irrigation Return Flow, Qs and Qg Of the total water
delivered for irrigation in the project area, the following
disposition of use was assumed:

1. Consumptive use by plants (60% of total).
2. Evaporation of excess water (15%).
3. Percolation to the phreatic aquifer (25%).

Of the 204,330 acre-ft'yr of surface water diverted for
irrigation, 173,680 acre-fu'yr reaches the fields (15% was
lost during conveyance). Of this amount 25% or 43,420
acre-ft/yr infiltrates as irrigation retum flow recharging the
phreatic aquifer (Qy;).

A total amount of 103,786 acre-ft'yr was pumped from
shallow and deep aquifers. Of this, 25% retums to the phreatic
aquifer contributing 25,947 acre-ft/yr toward ground water
recharge (Qr).

Pumping, Q. Total irrigation pumping was estimated from
averages of the metered yearly discharge for all wells and
ghanats in the area. Specifically,

* All shallow and deep wells and ghanats were located
on 1:20,000 scale maps.

* Average pumping discharges were recorded from records

or personal communication with the landowners in the
field.

Average yearly discharge was obtained by weighting
pumping days to the total days per year:

where
(_2 = average yearly discharge = 103,786 acre-ft'yr,
@ = metered or estimated discharge [acre-ft/yr],
t days of pumping per year.

Ground Water Storage Change, AV. Inthe project area
the ground water reservoir was approximated by a two-
layered system:

1. Phreatic (less than 150-ft depth).

2. Deep (sum of all confined and semiconfined aquifers
below 150 ft).

As a first approximation, it was assumed that:

AV = BV, + BV, ,
where
AV = total ground water storage change [acre-fu/yr],

av, phreatic aquifer change [acre-ft/yr],
&V, = deep aquifer change [acre-ft/yr].

It was further assumed that 8V, — 0 (deep aquifer storage).
This was a reasonable assumption as total deep aquifer ex-
ploitation during the study period was only 44 859 acre-ft/
yr, whereas total ground water inflow alone was 70,542
acre-ft/yr.

Shallow aquifer storage change was computed from a
plot of average ground water fluctuations (hydrographs) after
subdividing the area into polygons (using Thiessen’s method)
with the shallow wells as the center of each polygon.

The average head (H) for each polygonal area for the

time period in question was computed from

3 An
H=——"

n

Z A

=1

A; = polygonal area [acres],

=
I

water level elevation as measured from the indi-
vidual well hydrograph [ft],
n = total number of wells measured (74).
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_ separately in order to compare its fluctuations with the fluc-

The southern recharge area (Foothill Zone) was analyzed 4, Ground water outflow from the basin is assumed fo

) ) be zero.
tuations of the total area of the plain.

The phreatic aquifer storage change was computed from )
the following equation: The resulting annual safe yield (SY) was calculated as

AV = AB3 , SY

Qi + Qq + Qs + Org + O + EP
70,542 + 30,649 + 43,420 + 25,947
+ 3477 + 113,679
287,714 acre-ft/yr .

Ii

where

A = total aquifer surface area [acres],

6 = effective porosity,
& = slope of hydrographs [ft'yr]. . ]
Figure 20.4 summarizes components in the hydrologic
Foothill Zone equilibrium equation example.

AV = 87,237 = 0.06 x 0.0116 = 6] acre-ft/yr .
Total Plain Area

AV = 308,912 x 0.04 x (—0.00241)
= =30 acre-ftiyr .

As can be see in the calculation, the low slopes indicated
that in an average year no significant phreatic aquifer storage
change occurred, and so AV was assumed to be zero and
within the error of estimation of the regional water balance.

Unknown Recharge, Q,, The error term in the analysis
15 the sum of all hydrologic components not accounted for
in Equation 20.2. The major portion probably consists of
natural recharge components neglected in the subsurface
inflow/outflow calculations.

Because unknown recharge is the most intangible item
in the eguation, a balance was forced at its expense. The
resulting value of 3477 acre-ft/yr indicates a slight gain in
recharge. ol
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Figure 20.4. Hydrologic equilibrium equation components.
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