

Addendum
to the

PEST Manual

John Doherty

Watermark Numerical Computing

February 2008

The PEST Control File

Preface: The PEST Control File
For ease of reference, variables within the PEST control file are listed, together with a short
explanation of each. This information is the most recent, and includes all variables discussed in
both this addendum and in the PEST manual itself.
pcf
* control data
RSTFLE PESTMODE
NPAR NOBS NPARGP NPRIOR NOBSGP [MAXCOMPDIM]
NTPLFLE NINSFLE PRECIS DPOINT [NUMCOM] [JACFILE] [MESSFILE]
RLAMBDA1 RLAMFAC PHIRATSUF PHIREDLAM NUMLAM [JACUPDATE]
RELPARMAX FACPARMAX FACORIG [IBOUNDSTICK UPVECBEND]
PHIREDSWH [NOPTSWITCH] [SPLITSWH] [DOAUI] [DOSENREUSE]
NOPTMAX PHIREDSTP NPHISTP NPHINORED RELPARSTP NRELPAR [PHISTOPTHRESH] [LASTRUN] [PHIABANDON]
ICOV ICOR IEIG [IRES] [JCOSAVEITN] [REISAVEITN]
* automatic user intervention
MAXAUI AUISTARTOPT NOAUIPHIRAT AUIRESTITN
AUISENSRAT AUIHOLDMAXCHG AUINUMFREE
AUIPHIRATSUF AUIPHIRATACCEPT NAUINOACCEPT
* singular value decomposition
SVDMODE
MAXSING EIGTHRESH
EIGWRITE
* lsqr
LSQRMODE
LSQR_ATOL LSQR_BTOL LSQR_CONLIM LSQR_ITNLIM
LSQRWRITE
* svd assist
BASEPESTFILE
BASEJACFILE
SVDA_MULBPA SVDA_SCALADJ SVDA_EXTSUPER SVDA_SUPDERCALC
* sensitivity reuse
SENRELTHRESH SENMAXREUSE
SENALLCALCINT SENPREDWEIGHT SENPIEXCLUDE
* parameter groups
PARGPNME INCTYP DERINC DERINCLB FORCEN DERINCMUL DERMTHD [SPLITTHRESH SPLITRELDIFF SPLITACTION]
(one such line for each of NPARGP parameter groups)
* parameter data
PARNME PARTRANS PARCHGLIM PARVAL1 PARLBND PARUBND PARGP SCALE OFFSET DERCOM
(one such line for each of NPAR parameters)
PARNME PARTIED
(one such line for each tied parameter)
* observation groups
OBGNME [GTARG] [COVFLE]
(one such line for each of NOBSGP observation group)
* observation data
OBSNME OBSVAL WEIGHT OBGNME
(one such line for each of NOBS observations)
* derivatives command line
DERCOMLINE
EXTDERFLE
* model command line
COMLINE
(one such line for each of NUMCOM command lines)
* model input/output
TEMPFLE INFLE
(one such line for each of NTPLFLE template files)
INSFLE OUTFLE
(one such line for each of NINSLFE instruction files)
* prior information
PILBL PIFAC * PARNME + PIFAC * log(PARNME) ... = PIVAL WEIGHT OBGNME
(one such line for each of NPRIOR articles of prior information)
* predictive analysis
NPREDMAXMIN [PREDNOISE]
PD0 PD1 PD2
ABSPREDLAM RELPREDLAM INITSCHFAC MULSCHFAC NSEARCH
ABSPREDSWH RELPREDSWH
NPREDNORED ABSPREDSTP RELPREDSTP NPREDSTP
* regularisation
PHIMLIM PHIMACCEPT [FRACPHIM] [MEMSAVE]
WFINIT WFMIN WFMAX [LINREG] [REGCONTINUE]
WFFAC WFTOL IREGADJ

The PEST Control File

Variables in “control data” section of PEST control file.

Variable Type Values Description

RSTFLE text “restart” or “norestart” instructs PEST whether to write restart data

PESTMODE text “estimation”, “prediction”,
“regularisation”

PEST’s mode of operation

NPAR integer greater than zero number of parameters

NOBS integer greater than zero number of observations

NPARGP integer greater than zero number of parameter groups

NPRIOR integer zero or greater number of prior information equations

NOBSGP integer greater than zero number of observation groups

MAXCOMPDIM integer optional; zero or greater number of elements in compressed Jacobian
matrix

NTPLFLE integer greater than zero number of template files

NINSFLE integer greater than zero number of instruction files

PRECIS text “single” or “double” format for writing parameter values to model input
files

DPOINT text “point” or “nopoint” omit decimal point in parameter values if possible

NUMCOM integer optional; greater than
zero

number of command lines used to run model

JACFILE integer optional; zero or one indicates whether model provides external
derivatives file

MESSFILE integer optional; zero or one indicates whether PEST writes PEST-to-model
message file

RLAMBDA1 real zero or greater initial Marquardt lambda

RLAMFAC real positive or negative, but
not zero

dictates Marquardt lambda adjustment process

PHIRATSUF real between zero and one fractional objective function sufficient for end of
current iteration

PHIREDLAM real between zero and one termination criterion for Marquardt lambda search

NUMLAM integer one or greater maximum number of Marquardt lambdas to test

JACUPDATE integer optional; zero or greater activation of Broyden’s Jacobian update
procedure

RELPARMAX real greater than zero parameter relative change limit

The PEST Control File

FACPARMAX real greater than one parameter factor change limit

IBOUNDSTICK integer optional; zero or greater instructs PEST not to compute derivatives for
parameter at its bounds

UPVECBEND integer optional; zero or one instructs PEST to bend parameter upgrade
vector if parameter hits bounds

PHIREDSWH real between zero and one sets objective function change for introduction of
central derivatives

NOPTSWITCH integer optional; one or greater iteration before which PEST will not switch to
central derivatives computation

SPLITSWH real optional; zero or greater the factor by which the objective function rises to
invoke split slope derivatives analysis until end of
run

DOAUI text “aui”, “auid”, or “noaui” instructs PEST to implement automatic user
intervention

DOSENREUSE text “senreuse” or
“nosenreuse”

instructs PEST to re-use parameter sensitivities

NOPTMAX integer -2, -1, 0, or any number
greater than zero

number of optimisation iterations

PHIREDSTP real greater than zero relative objective function reduction triggering
termination

NPHISTP integer greater than zero number of successive iterations over which
PHIREDSTP applies

NPHINORED integer greater than zero number of iterations since last drop in objective
function to trigger termination

RELPARSTP real greater than zero maximum relative parameter change triggering
termination

NRELPAR integer greater than zero number of successive iterations over which
RELPARSTP applies

PHISTOPTHRESH real optional; zero or greater objective function threshold triggering termination

LASTRUN integer optional; zero or one instructs PEST to undertake (or not) final model
run with best parameters

PHIABANDON real or
text

optional objective function value at which to abandon
optimisation process or filename containing
abandonment schedule

ICOV integer zero or one record covariance matrix in matrix file

ICOR integer zero or one record correlation coefficient matrix in matrix file

IEIG integer zero or one record eigenvectors in matrix file

The PEST Control File

IRES integer zero or one record resolution data

JCOSAVEITN text “jcosaveitn” or
“nojcosaveitn”

Write current jacobian matrix to iteration-specific
JCO file at the end of every optimisation iteration.

REISAVEITN text “reisaveitn” or
“noreisaveitn”

Store best-fit residuals to iteration-specific
residuals file at end of every optimisation
iteration.

The PEST Control File

Variables in optional “automatic user intervention” section of PEST control file.

Variable Type Values Description

MAXAUI integer zero or greater maximum number of AUI iterations per
optimisation iteration

AUISTARTOPT integer one or greater optimisation iteration at which to commence AUI

NOAUIPHIRAT real between zero and one relative objective function reduction threshold
triggering AUI

AUIRESTITN integer zero or greater, but not
one

AUI rest interval expressed in optimisation
iterations

AUISENSRAT real greater than one composite parameter sensitivity ratio triggering
AUI

AUIHOLDMAXCHG integer zero or one instructs PEST to target parameters which
change most when deciding which parameters to
hold

AUINUMFREE integer greater than zero cease AUI when only AUINUMFREE parameters
are unheld

AUIPHIRATSUF real between zero and one relative objective function improvement for
termination of AUI

AUIPHIRATACCEPT real between zero and one relative objective function reduction threshold for
acceptance of AUI-calculated parameters

NAUINOACCEPT integer greater than zero number of iterations since acceptance of
parameter change for termination of AUI

The PEST Control File

Variables in optional “singular value decomposition” section of PEST control file.

Variable Type Values Description

SVDMODE integer zero or one activates truncated singular value decomposition
for solution of inverse problem

MAXSING integer greater than zero number of singular values at which truncation
occurs

EIGTHRESH real zero or greater, but less
than one

eigenvalue ratio threshold for truncation

EIGWRITE integer zero or one determines content of SVD output file

Variables in optional “LSQR” section of PEST control file.

Variable Type Values Description

LSQRMODE integer zero or one activates LSQR solution of inverse problem

LSQR_ATOL real zero or greater LSQR algorithm atol variable

LSQR_BTOL real zero or greater LSQR algorithm btol variable

LSQR_CONLIM real zero or greater LSQR algorithm conlim variable

LSQR_ITNLIM integer greater than zero LSQR algorithm itnlim variable

LSQR_WRITE integer zero or one instructs PEST to write LSQR file

Variables in optional “SVD-assist” section of PEST control file.

Variable Type Values Description

BASEPESTFILE text a filename name of base PEST control file

BASEJACFILE text a filename name of base PEST Jacobian matrix file

SVDA_MULBPA integer zero or one instructs PEST to record multiple BPA files

SVDA_SCALADJ integer -4 to 4 sets type of parameter scaling undertaken in
super parameter definition

SVDA_EXTSUPER integer 0, 1, 2, -2, 3 sets means by which super parameters are
calculated

SVDA_SUPDERCALC integer zero or one instructs PEST to compute super parameter
sensitivities from base parameter sensitivities

The PEST Control File

Variables in optional “sensitivity re-use” section of PEST control file.

Variable Type Values Description

SENRELTHRESH real zero to one relative parameter sensitivity below which
sensitivity re-use is activated for a parameter

SENMAXREUSE integer integer other than zero maximum number of re-used sensitivities per
iteration

SENALLCALCINT integer greater than one iteration interval at which all sensitivities re-
calculated

SENPREDWEIGHT real any number weight to assign to prediction in computation of
composite parameter sensitivities to determine
sensitivity re-use

SENPIEXCLUDE test “yes” or “no” include or exclude prior information when
computing composite parameter sensitivities to
determine sensitivity re-use

The PEST Control File

Variables required for each parameter group in “parameter groups” section of PEST
control file.

Variable Type Values Description

PARGPNME text 12 characters or less parameter group name

INCTYP text “relative”, “absolute”,
“rel_to_max”

method by which parameter increments are
calculated

DERINC real greater than zero absolute or relative parameter increment

DERINCLB real zero or greater absolute lower bound of relative parameter
increment

FORCEN text “switch”, “always_2”,
“always_3”

determines whether central derivatives
calculation is undertaken

DERINCMUL real greater than zero derivative increment multiplier when undertaking
central derivatives calculation

DERMTHD text “parabolic”, “outside_pts”,
“best_fit”

method of central derivatives calculation

SPLITTHRESH real greater than zero (or zero
to deactive)

slope threshold for split slope analysis

SPLITRELDIFF real greater than zero relative slope difference threshold for action

SPLITACTION text text “smaller”, “zero” or “previous”

The PEST Control File

Variables required for each parameter in “parameter data” section of PEST control
file.

Variable Type Values Description

PARNME text 12 characters or less parameter name

PARTRANS text “log”, “none”, “fixed”,
“tied”

parameter transformation

PARCHGLIM text “relative” or “factor” type of parameter change limit

PARVAL1 real any real number initial parameter value

PARLBND real less than or equal to
PARVAL1

parameter lower bound

PARUBND real greater than or equal to
PARVAL1

parameter upper bound

PARGP text 12 characters or less parameter group name

SCALE real any number other than
zero

multiplication factor for parameter

OFFSET real any number number to add to parameter

DERCOM integer zero or greater model command line used in computing
parameter increments

PARTIED text 12 characters or less the name of the parameter to which another
parameter is tied

The PEST Control File

Variables required for each observation group in “observation groups” section of PEST
control file.

Variable Type Values Description

OBGNME text 12 characters or less observation group name

GTARG real positive group-specific target measurement objective
function

COVFILE text a filename optional covariance matrix file associated with
group

Variables required for each observation in “observation data” section of PEST control
file.

Variable Type Values Description

OBSNME text 20 characters or less observation name

OBSVAL real any number measured value of observation

WEIGHT real zero or greater observation weight

OBGNME text 12 characters or less observation group to which observation assigned

The PEST Control File

Variables in optional “derivatives command line” section of PEST control file.

Variable Type Values Description

DERCOMLINE text system command command to run model for derivatives calculation

EXTDERFLE text a filename name of external derivatives file

Variables in “model command line” section of PEST control file.

Variable Type Values Description

COMLINE text system command command to run model

Variables in “model input/output” section of PEST control file.

Variable Type Values Description

TEMPFLE text a filename template file

INFLE text a filename model input file

INSFLE text a filename instruction file

OUTFLE text a filename model output file

The PEST Control File

Variables in “prior information” section of PEST control file.

Variable Type Values Description

PILBL text 20 characters or less name of prior information equation

PIFAC text real number other than
zero

parameter value factor

PARNME text 12 characters or less parameter name

PIVAL real any number “observed value” of prior information

WEIGHT real zero or greater prior information weight

OBGNME text 12 characters or less observation group name

The PEST Control File

Variables in optional “predictive analysis” section of PEST control file.

Variable Type Values Description

NPREDMAXMIN integer -1 or 1 maximise or minimise prediction

PREDNOISE integer 0 or 1 instructs PEST to include predictive noise in
prediction

PD0 real greater than zero target objective function

PD1 real greater than PD0 acceptable objective function

PD2 real greater than PD1 objective function at which Marquardt lambda
testing procedure is altered as prediction is
maximised/minimised

ABSPREDLAM real zero or greater absolute prediction change to terminate
Marquardt lambda testing

RELPREDLAM real zero or greater relative prediction change to terminate Marquardt
lambda testing

INITSCHFAC real greater than zero initial line search factor

MULSCHFAC real greater than one factor by which line search factors are increased
along line

NSEARCH integer greater than zero maximum number of model runs in line search

ABSPREDSWH real zero or greater absolute prediction change at which to use
central derivatives calculation

RELPREDSWH real zero or greater relative prediction change at which to use central
derivatives calculation

NPREDNORED integer one or greater iterations since prediction raised/lowered at which
termination is triggered

ABSPREDSTP real zero or greater absolute prediction change at which to trigger
termination

RELPREDSTP real zero or greater relative prediction change at which to trigger
termination

NPREDSTP integer two or greater number of iterations over which ABSPREDSTP
and RELPREDSTP apply

The PEST Control File

Variables in optional “regularisation” section of PEST control file.

Variable Type Values Description

PHIMLIM real greater than zero target measurement objective function

PHIMACCEPT real greater than PHIMLIM acceptable measurement objective function

FRACPHIM real optional; zero or greater,
but less than one

set target measurement objective function at
this fraction of current measurement objective
function

MEMSAVE text “memsave” or
“nomemsave”

activate conservation of memory at cost of
execution speed and quantity of model output

WFINIT real greater than zero initial regularisation weight factor

WFMIN real greater than zero minimum regularisation weight factor

WFMAX real greater than WFMAX maximum regularisation weight factor

LINREG text “linreg” or “nonlinreg” informs PEST that all regularisation constraints
are linear

REGCONTINUE text “continue” or “nocontinue” instructs PEST to continue minimising
regularisation objective function even if
measurement objective function less than
PHIMLIM

WFFAC real greater than one regularisation weight factor adjustment factor

WFTOL real greater than zero convergence criterion for regularisation weight
factor

IREGADJ integer zero or one instructs PEST to perform inter-regularisation
group weight factor adjustment

Table of Contents

Table of Contents
1. Introduction..1
2. Alterations and Upgrades to PEST ..2

2.1 New Restart Option...2
2.2 Template and Instruction File Headers ...3
2.3 User Intervention...3
2.4 Improvements to the Predictive Analyser’s Line Search..4
2.5 Switch to Three-Point Derivatives Calculation ..5
2.6 SVD-Assist: Super Parameter Definition ...6
2.7 SVD-Assist: Multiple Parameter Value Files ...8
2.8 SVD-Assist: Improved Handling of Untransformed Parameters....................................9

2.8.1 General ..9
2.8.2 The SVDA_SCALADJ Control Variable ...11

2.9 SVD-Assist: Externally-Defined Super Parameters ...14
2.10 A New IREGADJ Option..15
2.11 Parallel PEST Run Repeats...16
2.12 Covariance Matrix Files..17
2.13 New Automatic User Intervention Default Settings ...18
2.14 Inclusion of Predictive Noise in Predictive Analysis Process19

2.14.1 General ..19
2.14.2 One Methodology for Accommodation of Predictive Noise20
2.14.3 An Alternative Methodology ..20
2.14.4 Objective Function Constraints...21
2.14.5 Implementation in PEST ...22

2.15 Starting a New PEST Run Using and Old Jacobian ...24
2.16 Partial Parallelisation of the Lamdba Search ..25
2.17 New NOPTMAX Setting ..25
2.18 New RLAMFAC Setting...26
2.19 New Setting for SVDMODE ..27
2.20 Using LSQR instead of Truncated SVD ...28
2.21 Greater Flexibility of Compressed Matrix Storage...31
2.22 SVDA - Automatic Super Parameter Derivatives Computation.................................31
2.23 SVDA – Super Parameter Definition through SVD ...32
2.24 SVDA - Using LSQR for Super Parameter Definition ...32
2.25 SVDA - A Refresher on Control Variables ..33
2.26 SVDA – Model-Calculated Derivatives ...34

2.26.1 General ..34
2.26.2 Alterations to SVDAPREP..35

2.27 Broyden’s Jacobian Matrix Update...36
2.27.1 General ..36

Table of Contents

2.27.2 Description ..36
2.27.3 Implementation of Broyden’s Update ...37

2.28 Parameter Sensitivity Re-Use ...38
2.28.1 General ..38
2.28.2 Activating Sensitivity Re-Use...38
2.28.3 Sensitivity Re-Use Variables ..39

2.29 Regularisation Convergence Adjustment..41
2.30 New Termination Criteria ...41
2.31 PSLAVE Command-Line Option ...43
2.32 New Jacobian Matrix Save Option ...43
2.33 Interim Residuals File Save Option ..44
2.34 Group-Specific Target Measurement Objective Functions ..44

2.34.1 General ..44
2.34.2 Implementation..46

2.35 Bad Derivatives Damage Mitigation - 1 ...47
2.35.1 General ..47
2.35.2 Implementation..49

2.36 Bad Derivatives Damage Mitigation - 2 ...50
2.36.1 General ..50
2.36.1 Implementation..51

2.37 Kullback-Leibler (K-L) Information Loss Statistics...52
3. Alterations and Additions to PEST Utilities..55

3.1 JCO2JCO...55
3.2 PCLC2MAT..55
3.3 JCOPCAT ...57
3.4 JCOORDER ..58
3.5 JCOADDZ...60
3.6 GENLIN..60

3.6.1 General ..60
3.6.2 GENLIN Input File ...61
3.6.3 Running GENLIN ...63

3.7 PESTLIN...64
3.7.1 General ..64
3.7.2 Using PESTLIN ..65

3.8 PARREP..66
3.9 OBSREP..67

3.9.1 General ..67
3.9.2 Running OBSREP ...67

3.10 PWTADJ1 ...67
3.10.1 General ..67
3.10.2 Running PWTADJ1 ..68

3.11 PWTADJ2 ...70

Table of Contents

3.11.1 General ..70
3.11.2 Using PWTADJ2...71

3.12 INFSTAT ..73
3.12.1 General ..73
3.12.2 Using INFSTAT..74
3.12.3 References ...76

3.13 WTSENOUT...77
3.13.1 General ..77
3.13.2 Running WTSENOUT ..78

3.14 ADDREG1 ..78
3.14.1 General ..78
3.14.2 Using ADDREG1..79

3.15 RANDPAR..79
3.15.1 General ..79
3.15.2 Using RANDPAR ...80

3.16 JCODIFF...82
3.17 JCOCOMB..83

3.17.1 General ..83
3.17.2 Observation Combination File ..83
3.17.3 Using JCOCOMB ...84

3.18 PNULPAR...85
3.18.1 General ..85
3.18.2 Using PNULPAR ..86
3.18.3 What to do Next ..88

3.19 DERCOMB1...90
3.19.1 General ..90
3.19.2 Using DERCOMB1...91

3.20 JACTEST ..91
3.20.1 General ..91
3.20.2 Using JACTEST..92
3.20.3 Using JACTEST in Parallel Mode ..93
3.20.4 Stopping JACTEST...94

3.21 RDMULRES...94
3.21.1 General ..94
3.21.2 The RDMULRES Input File ...95
3.21.3 Running RDMULRES ..97

3.22 MULPARTAB ..97
3.22.1 General ..97
3.22.2 Using MULPARTAB..98

3.23 COMFILNME...99
3.24 PARAMID ..101

3.24.1 General ..101

Table of Contents

3.24.2 Using PARAMID..101
3.25 POSTJACTEST ..102
3.26 MULJCOSEN ...103
3.27 IDENTPAR...104

3.27.1 General ..104
3.27.2 Using IDENTPAR...106

3.28 SUPCALC...108
3.28.1 General ..108
Using SUPCALC ...111

4. Model Predictive Error Analysis ...114
4.1 Concepts..114

4.1.1 General ..114
4.1.2 Calculation of the R and G Matrices...115
4.1.3 Some Special Considerations ..117

4.2 Alterations to PEST ..118
4.2.1 The IRES Variable ..118
4.2.2 The “Resolution Data File” ...118

4.3 RESPROC...119
4.3.1 General ..119
4.3.2 What RESPROC Does ..119
4.3.3 Running RESPROC ..120
4.3.4 SVD-Assisted Parameter Estimation ..120

4.4 RESWRIT ...121
4.4.1 General ..121
4.4.2 Running RESWRIT...121
4.4.3 Format of Matrix Files ..122

4.5 PARAMERR...123
4.5.1 General ..123
4.5.2 Uncertainty Files ...123
4.5.3 Using PARAMERR ..126

4.6 PREDERR...127
4.6.1 General ..127
4.6.2 Using PREDERR ..127

4.7 PREDERR1...128
4.8 PREDERR2...129
4.9 PREDERR3...129
4.10 PREDVAR1 ..129

4.10.1 General ..129
4.10.2 Using PREDVAR1..131

4.11 PREDVAR2 ..134
4.11.1 General ..134
4.11.2 Using PREDVAR2..134

Table of Contents

4.12 PREDVAR3 ..136
4.12.1 General ..136
4.12.2 Using PREDVAR3..137

4.13 PREDVAR4 ..139
4.14 PREDVAR5 ..140

4.14.1 General ..140
4.14.2 Using PREDVAR5..142
4.14.3 Observation Weights ...143
4.14.4 Parameter Scaling..144

4.15 PREDVAR1A ...144
4.16 PCOV2MAT ...145

4.16.1 General ..145
4.16.2 Using PCOV2MAT...146

4.17 SCALEPAR ..146
4.17.1 General ..146
4.17.2 Calculating the Resolution Matrix of Native Parameters147
4.17.3 Running SCALEPAR..148
4.17.4 The New PEST Control File ...150

4.18 REGERR...151
4.18.1 General ..151
4.18.2 Running REGERR ..152

4.19 REGPRED...152
4.19.1 General ..152
4.19.2 Theory ...153
4.19.3 Preparations for a REGPRED Run..157
4.19.4 Running REGPRED..158
4.19.5 Some Notes ...161
4.19.6 Using the SVD Matrix Option ..163

4.20 PREDUNC1 ..163
4.20.1 Theory ...163
Using PREDUNC1...165

4.21 PREDUNC4 ..166
4.22 PREDUNC5 ..166

5. Matrix Manipulation Programs..167
5.1 General ..167
5.2 COV2COR ..167
5.3 COVCOND...167
5.4 JCO2MAT...168
5.5 JROW2MAT...169
5.6 JROW2VEC..169
5.7 MAT2SRF...170
5.8 MATADD ...170

Table of Contents

5.9 MATCOLEX...171
5.10 MATDIAG..171
5.11 MATDIFF ...171
5.12 MATINVP...171
5.13 MATJOINC...172
5.14 MATJOIND ..172
5.15 MATJOINR...173
5.16 MATORDER ..174
5.17 MATPROD ...174
5.18 MATQUAD ..175
5.19 MATROW...175
5.20 MATSMUL...176
5.21 MATSPEC ..176
5.22 MATSVD..176
5.23 MATSYM ...177
5.24 MATTRANS...177
5.25 MATXTXI ..178
5.26 MATXTXIX ...178
5.27 PEST2VEC ...178
5.28 VEC2PEST ...179
5.29 VECLOG...180

6. A Global Optimiser – CMAES_P..181
6.1 General ..181
6.2 The Algorithm in Brief ...181
6.3 The CMAES_P Implementation of CMA-ES...182

6.3.1 Introduction ...182
6.3.2 Features in Common with PEST...182
6.3.3 Parameter Estimation and Optimisation..183

6.4 Preparing for a CMAES_P Run ..183
6.4.1 The Input Dataset ..183
6.4.2 Parameter Transformation...184
6.4.3 Parameter Initial Values and Parameter Bounds...185

6.5 Running CMAES_P..186
6.5.1 The CMAES_P Command Line..186
6.5.2 CMAES_P Prompts...186
6.5.3 Stopping and Restarting ..189
6.5.4 Final Model Run..189

6.6 Supplying a Parameter Covariance Matrix ...190
6.7 SVD-Hybridisation ...191
6.8 CMAES_P Output Files..192
6.9 Parallelisation..193
6.10 Pseudo-Regularisation ..194

Table of Contents

7. A Global Optimiser – SCEUA_P ..196
7.1 Introduction...196
7.2 Using SCEUA_P...197

7.2.1 SCEUA Control Variables ..197
7.2.2 Running SCEUA_P...197
7.2.3 SCEUA_P Output ...200
7.2.4 Interrupting a SCEUA_P Run ...200
7.2.5 Restarting a SCEUA_P Run..200
7.2.6 Minimisation of a Non-Least-Squares Objective Function200
7.2.7 Final Model Run..201
7.2.8 Best Parameter Values ..201

7.3 Parallel SCEUA_P ..201
7.3.1 Principles of Use ...201
7.3.2 The SCEUA_P Master ..202
7.3.3 Slaves ..202
7.3.4 Final Model Run in Parallel Mode..203
7.3.5 Additional Output Files...204
7.3.6 A Possible Error Message ...204

7.4 Problem Formulation ..204
8. References..205

Introduction 1

1. Introduction
This document describes alterations to PEST that have been made since publication of the
fifth edition of the manual. Publication of this edition of the manual coincided with the
release of version 9.0 of PEST. Hence all alterations documented herein pertain to versions
later than that.

Of particular importance are additions to PEST functionality, and additions to the PEST
utility suite, that implement improved regularised inversion and model predictive error
variance analysis.

The author would like to point out that he is aware of the fact that when an addendum to a
manual grows to a size that is nearly as large as the manual itself, it is time to write a new
edition to the manual. This will take place in the near future. In fact, there will be two
manuals – a “beginners manual” and an “advanced manual”. But for now this has to wait.
There are many things I would like to do, and this is surely one of them. However in the
meantime the user can perhaps remind him/herself that this inconvenience is part of the price
that must be paid for the fact that PEST is in the public domain.

While, for the author, the making of improvements to PEST and its utility suite is largely a
labour of love, it must be pointed out that I have had financial help for certain, important,
aspects of this work. I would particularly like to acknowledge the following.

• Work related to inclusion of the LSQR solver in PEST, and to calibration-constrained
Monte Carlo analysis, was supported by a contract with Boise State University under
EPA Grant X-96004601-0. This contract also supported the development of software
to implement an interface between PEST and the adjoint process of MODFLOW-
2005 developed by Tom Clemo of Boise State University (see the manual to the
PEST Groundwater Data Utilities for more details).

• Support from S. S. Papadopulous and Associates is gratefully acknowledged.

• So too, is support from EMS-I.

• The INFSTAT utility documented herein was written under contract to the Madison,
WI, office of USGS.

• Help in development of the JACTEST utility and of the CMAES_P global optimizer
was provided by Los Alamos National Laboratory and South Florida Water
Management District.

Alterations and Upgrades to PEST 2

2. Alterations and Upgrades to PEST
2.1 New Restart Option
Execution of PEST can now be recommenced with four different switches. Use of the “/r”,
“/j” and “/s” switches is documented in the PEST manual. The new restart switch is the “/d”
switch.

The “/d” switch has a similar role to the existing “/s” switch. Recall that the “/s” switch can
be used to recommence Parallel PEST execution at the same model run in which it was
previously interrupted, if interruption took place during calculation of the Jacobian matrix. If
Parallel PEST execution was interrupted during the Marquardt lambda testing procedure
however, restarting PEST with the “/s” switch has the same effect as restarting it with the “/j”
switch; that is, PEST is restarted at that point in its previous run at which calculation of the
Jacobian matrix was just completed.

If PEST is run in non-parallel mode, then it cannot be restarted with the “/s” switch. However
it can be re-started with the “/d” switch. The effect is exactly the same as re-starting a
Parallel PEST run with the “/s” switch.

Note the following important points pertaining to PEST’s restart switches:-

1. Parallel PEST cannot be restarted with the “/d” switch.

2. Non-Parallel PEST cannot be restarted with the “/s” switch.

3. A previously stopped Parallel PEST run can be restarted as non-Parallel PEST or
Parallel PEST using either the “/r” or “/j” switches.

4. A previously stopped non-Parallel PEST run can be restarted as Parallel PEST using
either the “/r” or “/j” switches.

5. A previously stopped Parallel PEST run cannot be restarted as non-Parallel PEST
with the “/s” switch.

6. A previously stopped non-Parallel PEST run cannot be restarted as Parallel PEST
with the “/d” switch.

The reader is probably wondering at this stage why, if the “/s” and “/d” switches have the
same effect, they cannot be used interchangeably between Parallel and non-Parallel PEST.
The reason is that run management is very different between these two versions of PEST. For
Parallel PEST, runs are not necessarily undertaken in sequence. Run results in the restart file
are also not stored in sequence. For non-Parallel PEST, the restart file does not hold run
results; rather it holds fragments of the Jacobian matrix. This can save considerably on file
storage when central differences are used for derivatives calculation. Also, this restart
methodology is more easily combined with external derivatives calculation – this being
available only in the non-Parallel version of PEST at present.

Alterations and Upgrades to PEST 3

It is freely admitted however, that an all-purpose run manager is needed. This, hopefully, will
be one an outcome of future PEST development. At that stage the “/s” and “/d” switches will
be combined.

2.2 Template and Instruction File Headers
The first line of a template file must be:-
ptf #

where “#” can be replaced by any other character that is suitable for definition of a parameter
delimiter. “ptf” stands for “PEST template file”.

The first line of an instruction file must be:-
pif #

where “#” can be replaced by any other character that is suitable for use as a marker
delimiter. “pif” stands for “PEST instruction file”.

PEST and its checking utilities now allow alternative headers for these two files. “jtf” (for
“JUPITER template file”) can be used in place of “ptf”, and “jif” (for “JUPITER instruction
file”) can be used in place of “pif”.

2.3 User Intervention
The “parameter hold file” can be used to hold the values of certain parameters fixed. By
stopping and restarting PEST using the “/j” switch, an attempt can then be made to re-
calculate the parameter upgrade vector with troublesome parameters temporarily deactivated.

As is explained in the PEST manual, the parameter hold file can be used not just for holding
parameters fixed, but also for altering the values of certain control variables. At the time of
writing, control variables for which in-flight alterations are allowed are LAMBDA,
RELPARMAX, FACPARMAX and UPVECBEND.

Five new control variables can now be altered through the parameter hold file. These all
pertain to the predictive analysis process. They are INITSCHFAC, MULSCHFAC,
NSEARCH, RELPREDSTP and ABSPREDSTP.

The first three of these variables govern operation of the line search procedure used in
prediction maximisation/minimisation. On many occasions, use of this procedure is critical to
the success of the maximisation/minimisation process. Contrary to advice initially supplied
with PEST documentation, it is often best to start this procedure with a low INITSCHFAC
value (for example 0.2). However if it is set too low, this can result in wasted model runs.
Similarly, MULSCHFAC may need to be set lower than 2.0 for highly nonlinear cases (even
as low as 1.3). As this may require increased runs per line search, NSEARCH may need to be
set higher than normal.

It is not explained in the PEST manual that termination criteria for the line search are the
same as those for termination of the predictive analysis process as defined by the
RELPREDSTP and ABSPREDSTP variables. (Actually, the line search procedure follows a

Alterations and Upgrades to PEST 4

complex algorithm in which both the objective function and prediction value are monitored,
with the former often expected to fall and then rise along the path of the search; hence there
are, in fact, a number of other termination criteria required for implementation of this
algorithm). It has been found from experience that in difficult problems, RELPREDSTP and
ABSPREDSTP may need to be set quite low. This will be particularly important where small
predictive uncertainty exists in a large predictive number (in which case the absolute, rather
than the relative, termination criterion should be used), especially where line search
increments are chosen to be small for better accommodation of nonlinear models.

New values for the above predictive analysis control variables can be supplied through the
parameter hold file in the same way as for other variables. The following figure shows a file
in which new values are provided for all of them.

As discussed in the PEST manual, the parameter hold file must be named case.hld where
case is the filename base of the pertinent PEST control file. The hold file is read just after
calculation of the Jacobian matrix and just before calculation of parameter upgrades. It is
very important that a parameter hold file be deleted after use; this will prevent its contents
being inadvertently used on a subsequent PEST run.

2.4 Improvements to the Predictive Analyser’s Line Search
Considerable improvements have been made to the line search implemented by PEST’s
predictive analyser. Recall from the PEST manual that implementation of a line search to find
the highest/lowest prediction for which the objective function is at or lower than the user-
supplied limit is optional; it is implemented only if NSEARCH is set to a number greater than
1. It has been found, however, that use of this option can greatly increase PEST’s ability to
find the maximum/minimum constrained predictive value, especially in difficult numerical
circumstances such as those that prevail where parameters are large in number and are highly
correlated. The line search algorithm implemented by PEST is actually quite complicated, for
not only does PEST need to monitor the value of the prediction as it travels along a certain
parameter trajectory; it must also monitor the value of the objective function as well. On
many occasions the objective function may actually fall before it rises to PD0 (the user-
defined objective function limit) when travelling along the parameter upgrade line from the
current set of parameter values to a potential new set of values.

It has been found that in those situations where numerical complexity dictates that a line
search is warranted, it is worth doing this line search thoroughly. To optimise the efficacy of
this search, the following settings are suggested.

• Set INITSCHFAC (initial line search factor) to 0.2 or 0.3; thus the line search begins
at a point on the potential parameter upgrade line which is not too far from current

initschfac 0.2
mulschfac 1.5
relpredstp 1.0e-4
abspredstp 0.00

Example of a parameter hold file.

Alterations and Upgrades to PEST 5

parameter values.

• Set MULSCHFAC (line search factor multiplier) between 1.3 and 1.7.

• Set NSEARCH (maximum number of model runs devoted to the line search) to 15.

• Set PD1 quite close to PD0, maybe only 0.2% or less higher.

• Set ABSPREDSTP and RELPREDSTP reasonably tight. (These are actually the
termination criteria for the predictive analysis process; one tenth of these values is
also used for termination of the line search.)

• Start the predictive analysis process from optimised parameter values (for which the
objective function is less than PD0).

Because the line search is repeated for every different value of the Marquardt lambda tested,
it can consume an inordinate number of model runs if significant Marquardt lambda
adjustment is warranted. Code has been inserted within PEST that aims to reduce the number
of line search runs required when testing Marquardt lambdas after the first on any one
optimisation iteration. Nevertheless, any savings that can be made in reducing trial Marquardt
lambdas will result in increased efficiency. Thus after you have had experience with using
the predictive analyser on your particular task, you may wish to consider setting the initial
Marquardt lambda (RLAMBDA1) lower or higher than you normally would, if this is where
PEST seems to prefer its value to be. Alternatively, set NUMLAM to 1, so that only 1
Marquardt lambda is employed per optimisation iteration; if this strategy is adopted it is
probably good practice to try a very low value for RLAMBDA1, maybe in the vicinity of
0.01 to 0.001 (or even zero), and to start the predictive analysis process from previously-
optimised parameter values.

While conducting a line search is a very time-consuming activity, experience has shown that
it can be worth the effort in many circumstances; it is sometimes quite surprising how high or
low calibration-constrained predictions can be. The cost of finding these extreme predictions,
however, can be particularly high when using Parallel PEST to undertake the predictive
analysis process, because while Jacobian runs are parallelised, line search runs are not. It is
planned, however to partially parallelise this process in the future.

2.5 Switch to Three-Point Derivatives Calculation
A new variable has been introduced to the “control data” section of the PEST control file in
order to provide more flexibility to the way in which PEST chooses (or not) to switch to
central derivatives calculation.

The eighth line of the PEST control file must supply a value for the PHIREDSWH variable;
this is the first (and optionally the only) variable on this line. If FORCEN for any parameter
group is set to “switch”, PEST will switch to central derivatives calculation on the first
occasion on which the relative objective function improvement is less than PHIREDSWH.
Thus, for example, if PHIREDSWH is set to 0.1 (which is its suggested value), and if, at the
end of any particular optimisation iteration, the new objective function is greater than 90% of
the objective function at the beginning of the iteration, PEST will employ three-point

Alterations and Upgrades to PEST 6

derivatives calculation for the remainder of the optimisation process. As a result of this, up to
twice as many model runs per iteration will be required for filling of the Jacobian matrix.
With more accurately calculated derivatives, PEST will often fair better in lowering the
objective function further, especially in contexts where parameter insensitivity or correlation
creates an ill-conditioned normal matrix.

There are times, however, where PEST “trips” into central derivatives calculation before
increased derivatives accuracy is really needed. This can occur, for example, where some
parameters need to change a great deal before they can effect a noticeable lowering of the
objective function, but they are prevented from doing so (or prevent other parameters from
doing so) because of the action of the parameter upgrade limiting variables RELPARMAX
and FACPARMAX. In cases like this, model run efficiency would be better served if the
parameter estimation process were continued with forward difference derivatives calculation
until the offending parameter(s) have moved a sufficient distance in parameter space for their
effect on the objective function to be noticeable, or for PEST not to have to limit their
movement (and with it the movement of other parameters) in order to curtail excessive
parameter variations within the one iteration (an often necessary measure for the prevention
of instability in highly nonlinear cases). Instead, the premature introduction of central
derivatives calculation simply increases the number of model runs required for completion of
the parameter estimation process, with no real benefits to this process being incurred from
three-point derivatives calculation from having been introduced so early.

A new variable named NOPTSWITCH may now optionally follow PHIREDSWH on the
eighth line of the PEST control file. If supplied, this must be an integer equal to 1 or greater.
If it is greater than 1, PEST will not switch to central derivatives calculation until the
NOPTSWITCH’th iteration at least, as long as the objective function does not rise during any
optimisation iteration. If the objective function does, in fact, rise, then the NOPTSWITCH
setting is overridden and PEST switches to three-point derivatives calculation.

If the optional DOAUI variable is supplied on the eighth line of the PEST control file it must
follow NOPTSWITCH, if NOPTSWITCH is also supplied. If NOPTSWITCH is not
supplied, it must simply follow PHIREDSWH.

2.6 SVD-Assist: Super Parameter Definition
Recall from the PEST manual that the SVDAPREP utility writes a PEST control file in which
super parameters are defined which can then be used for SVD-assisted parameter estimation.
In writing this file, SVDAPREP transfers observations and observation weights directly from
the base parameter PEST control file to the new super parameter PEST control file. When
PEST then commences an SVD-assisted parameter estimation run, it undertakes singular
value decomposition of the XtQX matrix in order to define the linear combination of base
parameters which comprises each super parameter. Singular value decomposition and super
parameter definition is only then repeated if a base parameter hits its bound; that base
parameter then remains at its bound while the super parameter estimation process proceeds in
order to estimate other base parameters.

In versions of PEST prior to 9.2, singular value decomposition for the purpose of super
parameter definition took place on the basis of base parameters defined in the base parameter

Alterations and Upgrades to PEST 7

PEST control file, and observations and weights defined in the super parameter PEST control
file. Under normal circumstances, observations and weights defined in the super parameter
control file are the same as those defined in the base parameter control file. However for
versions of PEST from 9.2 onwards, the user has the option of altering observations and
weights defined in the super parameter control file once this file has been built by
SVDAPREP. Furthermore, super parameter definition now takes place on the basis of
observations and weights contained in the original base parameter control file. Hence
parameter estimation can take place on the basis of a new set of observations and/or weights,
different from those used for definition of super parameters.

There may be some situations where the ability to undertake super parameter definition on
the basis of one set of observations and weights, and parameter estimation on the basis of
another is important. For example, a simple but important instance where this may prove
useful is where a covariance matrix is supplied for super parameter estimation based on the
observation correlation structure induced by using super parameters. As discussed by Cooley
(2004) and by Moore and Doherty (2005b) all forms of regularisation, or parameter
averaging, lead to a correlated “measurement noise” structure. If it is desired that account be
taken of this noise structure in the parameter estimation process, SVDAPREP can be used for
generation of the super parameter PEST control file in the usual fashion. Then an appropriate
covariance matrix can be supplied for the observations contained in that file. However if
individual weights, rather than a covariance matrix, are used in the base PEST control file,
super parameter definition takes place on the basis of the individual weights, while estimation
of super parameters (and hence indirectly of base parameters) takes place using a covariance
matrix which best characterizes “measurement noise” in these circumstances. In more
complex modelling contexts, the number, names and types of observations can be different in
the super parameter PEST control file from those contained in the base parameter PEST
control file.

The following points must be born carefully in mind when using PEST for SVD-assisted
parameter estimation.

1. When PEST commences a super parameter estimation run by undertaking singular
value decomposition on the basis of observations and weights contained in the base
PEST control file, it includes all observations and prior information equations defined
in the base PEST control file in formulation of the X matrix if PESTMODE is set to
“estimation” in that file. However if, in the base PEST control file, PESTMODE is set
to “regularisation”, then observations and prior information equations belonging to
regularisation groups are excluded from this matrix. If PESTMODE is set to
“prediction” in the base PEST control file, the sole member of the observation group
“predict” is also excluded from the X matrix.

2. If prior information is used in the base PEST control file, but prior information
sensitivities are not available from the corresponding Jacobian matrix file, PEST will
simply not use sensitivities pertaining to that prior information in the formulation or
super parameters. (This can occur when initial base parameter sensitivities were
calculated using SVD without prior information in an attempt to evaluate a suitable
number of base parameters to employ – see the PEST manual for details.)

3. While covariance matrices can be supplied for any or all observation and prior

Alterations and Upgrades to PEST 8

information groups in the super parameter PEST control file, a covariance matrix can
only be supplied for observation and prior information groups whose names begin
with “regul” in the base PEST control file, and then only if PESTMODE is set to
“regularisation”.

2.7 SVD-Assist: Multiple Parameter Value Files
The SVD-assist section of the PEST control file now has an optional third line; this line
contains control variables which can govern the operation of certain aspects of the SVD-
assisted parameter estimation process. The name of the first variable on this line is
SVDA_MULBPA. The figure below shows an example of the SVD-assist section of a PEST
control file with the extra new line containing only this variable.
* svd assist
temp1.pst
temp1.jco
1

The SVD-Assist section of a PEST control file.

SVDA_MULBPA can be set to either 0 or 1. If it is set to 1, then not just one, but a series of
“BPA files” will be recorded during the course of the parameter estimation process. Recall
that a “BPA file” contains best base parameter estimates at any stage of the parameter
estimation process; at the end of the parameter estimation process it contains best base
parameters achieved throughout the entire process. Recall also that the filename base of the
BPA file is that of the base parameter PEST control file, not the super parameter control file
through which parameter estimation actually takes place.

With SVDA_MULBPA set to 1, PEST records two BPA files on every occasion that base
parameter values are improved. The first of these files is the normal BPA file. The second has
the same name, but with an extension of “.N” appended, with “N” indicating the optimisation
iteration number in which the base parameters recorded therein were achieved. Thus if, for
example, the filename base of a base PEST control file is base, then at the conclusion of the
parameter estimation process BPA files named base.bpa, base.bpa.1, base.bpa.2 etc will be
present within the current working directory. The first of these contains the overall best base
parameters achieved through the parameter estimation process. The others contain base
parameter values achieved during the indicated optimisation iterations. Note that not all
optimisation iterations will be represented in this sequence – only those iterations will be
represented where base parameters are improved from those previously achieved during the
current parameter estimation process.

To accommodate this new option, the SVDAPREP utility has one extra prompt. viz:

Write multiple BPA files? [y/n] (<Enter> if "n"):

As is apparent, the default is “no” (and SVDA_MULBPA is thus set to zero), leaving PEST
operation unchanged from previous versions.

Alterations and Upgrades to PEST 9

2.8 SVD-Assist: Improved Handling of Untransformed
Parameters

2.8.1 General

Problems can arise when log-transformed and untransformed parameters are simultaneously
estimated using SVD-assist. They are an outcome of the fact that log-transformed parameters
can have vastly different sensitivities from those of untransformed parameters. In fact the
latter can have vastly different sensitivities from those of other untransformed parameters.
PEST has internal numerical means of accommodating the estimation of parameters of vastly
differing sensitivity. However special considerations arise when implementing SVD-assisted
parameter estimation. This section describes those considerations, and the functionality that
is now available within PEST to accommodate them.

Ideally, when formulating an SVD-assisted parameter estimation problem, parameters should
be normalized by their standard deviations. There are a number of reasons for this, one of
which is that the solution to the regularized inverse problem can then approach the solution
of maximum parameter likelihood (if initial parameter values are chosen wisely). Another
important consideration is that normalisation by standard deviation tends to equalize
sensitivities across different parameter types. If, after such normalisation, a particular base
parameter, or group of base parameters, is found to be still insensitive, such parameters will
be removed from consideration in the normal course of formulating the SVD-assisted
parameter estimation process on the basis of eigenvectors corresponding to the major singular
values of XtQX; thus such parameters will not feature strongly in super parameter definition.
On the other hand, base parameters which are particularly sensitive after normalisation will
feature strongly in super parameter definition, and hence will be adjusted during the
parameter estimation process in preference to other, less sensitive, base parameters.

If untransformed base parameters are not normalised, it is possible that some of them may be
“artificially hypersensitive”. For example in a groundwater model, recharge (which is best
left untransformed to increase the linearity of the parameter estimation process) is often far
more sensitive than other parameters (often by many orders of magnitude) simply because
low numbers are used to represent it in many modelling contexts. Thus recharge base
parameters feature strongly in super parameters. Furthermore in many cases the top few
resulting super parameters can be hundreds of times more sensitive than the next super
parameters, this creating numerical problems for PEST as it tries to adjust both the recharge-
dominated super parameters, together with super parameters of far lower sensitivity which
contain linear combinations of other base parameters which may be for more instrumental in
lowering the objective function than recharge parameters. If recharge parameters were
normalized with respect to their natural variability this problem would not occur, for a very
low number expressing what may be a comparatively high recharge value would then become
a comparatively high number. Because variations in this high number then have smaller
effects on model outputs than variations in the corresponding unnormalised very small
number, the extreme sensitivities associated with the latter are removed. A similar affect
would be achieved if recharge were log transformed. Mathematically, derivatives of log-
transformed parameters are automatically normalized by their values – this achieving
something approaching normalization by natural variability. However, in the case of
recharge, while log transformation may remove artificial hypersensitivity, the parameter

Alterations and Upgrades to PEST 10

estimation process may suffer because of the nonlinearities introduced to it through log
transformation.

Another problem that arises with “artificial hypersensitivity” of base parameters is that it is
far too easy for them to encounter their bounds in the course of the parameter estimation
process. Recall that it is an unfortunate necessity of employing SVD-assist as an inversion
mechanism that once a base parameter hits its bound, it must stay stuck there forever.
Premature bounds collisions can be mitigated by employing a relatively low RELPARMAX
setting. However even this measure cannot forestall wholesale bounds collision of
hypersensitive parameters, often on the first iteration of the parameter estimation process.
The reason for this is that super parameters are actually the coefficients by which normalised
(i.e. with magnitude 1) eigenvectors of XtQX are multiplied in determining parameter
combinations which best reduce the (measurement) objective function. The component of a
hypersensitive base parameter in one of these normalised eigenvectors can be such that, even
when the corresponding super parameter is increased only incrementally for the purpose of
derivatives calculation, the pertinent base parameter can hit its bounds; this happens solely as
a consequence of the fact that the eigenvector has a magnitude of 1 and that hypersensitive
base parameters (which will dominate the top few eigenvectors) have a “natural magnitude”
which may be orders of magnitude smaller than this. Obviously this is an outrageous
situation which must be prevented at all costs. Fortunately, the problem is easily forestalled
by estimating high multiples of hypersensitive base parameters - that is, by appropriate base
parameter scaling.

Base parameter scaling can be easily undertaken by direct editing of a base PEST control file
prior to running SVDAPREP. Say, for example, that all parameters of a certain type (for
example all recharge parameters) are to be scaled so that they are a thousand times less
sensitive, thus avoiding the deleterious affects of artificial base parameter hypersensitivity
discussed above. This could be achieved in the following manner.

1. Provide all recharge parameters with a SCALE of 0.001 in the “parameter data”
section of the base PEST control file.

2. Multiply all recharge parameter initial values, and their bounds, by a factor of 1000.

3. Multiply any absolute derivative increments, and relative increment absolute lower
bounds, by a factor of 1000 in the “parameter groups” section of the PEST control
file.

4. Alter any prior information equations containing these parameters such that they are
correct when any recharge parameter involved in any equation is multiplied by 1000.

Thus PEST “sees” (and estimates) 1000 times each recharge parameter, while the model
“sees” correct recharge parameter values. (Note that if an OFFSET is employed for a
parameter this does not need to be altered because PEST multiplies by the SCALE before it
adds the OFFSET. Note also that if these changes are made to a base parameter control file
for which a corresponding JCO file already exists, JCO2JCO can be used to create a new
JCO file corresponding to the edited PEST control file, thus obviating the need for re-
calculation of base parameter sensitivities). As a result of these alterations to the base PEST
control file, sensitivities with respect to these now-scaled recharge base parameters will be

Alterations and Upgrades to PEST 11

1000 times less than those of their unscaled counterparts.

The above procedure is recommended if programs such as RESPROC and its partner utilities
are to be used for post-calibration predictive error variance analysis, for the user can craft the
parameter estimation problem to suit his/her purposes, and have full control over the scaling
process. However PEST allows somewhat equivalent operations to be performed with less
trouble than the above as a practical means of ensuring good performance of the SVD-
assisted parameter estimation process. These will now be described.

2.8.2 The SVDA_SCALADJ Control Variable

PEST now provides a variety of automatic base parameter scaling mechanisms to combat the
problems associated with base parameter hypersensitivity outlined above. The variable which
controls selection of these mechanisms is named SVDA_SCALADJ. If present, it is situated
after the SVDA_MULBPA variable on the third line of the “svd assist” section of the super
parameter PEST control file. See the figure below in which a value of “4” is assigned to this
variable. Permissible values are -4, -3, -2, -1, 0, 1, 2, 3, and 4. If omitted from the PEST
control file, a default value of 0 is assumed; in this case no base parameter scaling is
undertaken.
* svd assist
temp1.pst
temp1.jco
1 4

The SVD-assist section of a super parameter PEST control file in which the
SVDA_SCALADJ control variable is assigned a value of 4.

Base parameter scaling options are now discussed in detail. It is important to note that all
scaling is undertaken internally by PEST. Estimated parameter values as displayed, for
example, in the BPA file do not require “de-scaling” by the user.

2.8.2.1 Non-Log-Transformed Parameter Scale Adjustment by Group

As stated above, problems caused by base parameter hypersensitivity do not tend to occur
when implementing SVD-assisted parameter estimation where all base parameters are log-
transformed. This is a result of the “self-normalizing” effect of logarithmic transformation.
As an inspection of the SEN (composite sensitivity) file produced by PEST often reveals,
sensitivities of log-transformed parameters, even of vastly different types, are generally not
as variable as those of untransformed parameters.

One option for untransformed parameters is to scale them such that their sensitivities are
roughly equal to those of log-transformed parameters involved in the parameter estimation
process. If SVDA_SCALADJ is set to 1 PEST undertakes scaling of untransformed base
parameters in the following fashion.

1. First it calculates the composite sensitivity of every adjustable base parameter; this is
calculated as the magnitude of the column of the Jacobian matrix corresponding to
each parameter, with each entry in that column multiplied by the squared weight
associated with the corresponding observation.

Alterations and Upgrades to PEST 12

2. Next it calculates the average composite sensitivity of all parameters in each
parameter group; that is, it calculates a kind of parameter group composite sensitivity.
It is assumed that all adjustable parameters within any parameter group are either log-
transformed or untransformed (tied and fixed members of a particular parameter
group are permitted).

3. For each untransformed parameter group PEST evaluates a scaling factor, applied to
all parameters in the group, which equates the average composite sensitivity for that
group to that of the log-transformed group of maximum average composite
sensitivity.

Variations of this theme are as follows.

1. If SVDA_SCALADJ is set to -1, PEST will never increase the sensitivity of an
untransformed parameter group to ensure composite sensitivity equalisation with the
log-transformed parameter group of highest average composite sensitivity; it will only
decrease the sensitivity of any untransformed parameter group.

2. If SVDA_SCALADJ is set to 2, PEST calculates the average composite sensitivity of
all log-transformed parameters, irrespective of the parameter group to which they
belong. Then, for each untransformed parameter group, all member parameters are
scaled such that the average composite sensitivity of the parameter group is equal to
that of all log-transformed parameters.

3. If SVDA_SCALADJ is set to -2, PEST will never increase the sensitivity of an
untransformed parameter group to ensure composite sensitivity equalisation with log-
transformed parameters; it will only decrease the sensitivity of an untransformed
parameter group.

PEST will terminate execution with an error message if SVDA_SCALADJ is set to -2, -1, 1
or 2 and any of the following conditions are met.

1. A base parameter group exists which contains both log-transformed and
untransformed parameters.

2. No log-transformed parameters are cited within the base control file.

3. All log-transformed base parameters have zero sensitivity.

2.8.2.2 Individual Non-Log-Transformed Base Parameter Scale Adjustment

As stated above, ideally parameters should be scaled by their standard deviations - that is, by
their innate variability – that is, by the uncertainty associated with those parameters in the
absence of any calibration information, this uncertainty being based solely on specialist
knowledge of the system. Such information cannot be supplied directly on a PEST control
file. However parameter upper and lower bounds (which are supplied through a PEST
control file) can be considered as surrogates for information of this type.

If SVDA_SCALADJ is set to 3, PEST assumes that the upper and lower bounds of all

Alterations and Upgrades to PEST 13

untransformed parameters are set approximately four standard deviations apart.
Untransformed parameters are then scaled by standard deviation calculated accordingly.
(There is no need for exactness here as the success of scaling in improving the performance
of SVD-assisted parameter estimation is not unduly sensitive to the exact scaling values. Four
standard deviations is a convenient assumption as, for normally distributed parameters, it
corresponds to a confidence interval of about 95 percent.)

If SVDA_SCALADJ is set to -3, PEST will not apply a scale factor that increases the
sensitivity of a parameter; it will only apply a scale factor that reduces the sensitivity of an
individual untransformed base parameter.

2.8.2.3 Pervasive Base Parameter Scale Adjustment

If SVDA_SCALADJ is set to 4, the strategy implemented when SVDA_SCALADJ is set to 3
is extended to accommodate all adjustable base parameters – even those that are log-
transformed. As for untransformed parameters, it is assumed that the bounds on log-
transformed parameters represent a separation of about 4 standard deviations, and that their
probability distributions are log-normal. Once again, these assumptions are not critical by any
means; they simply represent a convenient basis for scaling. If SVDA_SCALADJ is set to -4,
no base parameter sensitivities will be increased in the process of base parameter scale
adjustment.

2.8.2.4 Which Option to Use

Option 4 is the preferred option, both theoretically and in terms of optimisation of PEST
performance when carrying out SVD-assisted parameter estimation. However it requires that
the user pay more careful attention to the setting of parameter bounds than he/she may
normally do. In fact on many occasion of PEST usage, scant attention is given to parameter
bounds at all, these being set wide enough apart for PEST to “listen to what the data says”
about the system being simulated by the model, and about the model itself, through the values
that it assigns to parameters employed by the model, unencumbered by the necessity to
respect bounds placed on these parameters. This, indeed, can be an important role played by
the calibration process, for if PEST insists on assigning unacceptable values to certain model
parameters, this may indicate conceptual flaws in the model. If all parameters are log-
transformed, setting SVDA_SCALADJ to 4 with parameter bounds set wide apart should not
cause problems (though it would be better to set it to zero under these conditions). However
if some parameters are not log transformed, use of option 4 could lead to dreadful
performance of the SVD-assisted parameter estimation process, as hypersensitivity of one or
more types of untransformed parameter could result in rapid bounds collision for the reasons
outlined above.

Notwithstanding superior performance of a properly-constructed SVD-assisted parameter
estimation process with SVDA_SCALADJ set to 4, the SVDAPREP utility (which prepares a
super parameter PEST control file from a base parameter PEST control file) provides a
default setting of 2 for SVDA_SCALADJ. Experience has shown that SVD-assisted
parameter estimation when both log-transformed and untransformed parameters are
simultaneously estimated is not as robust with this option as it is for options 3 or 4 with
careful consideration given to the setting of parameter bounds. However if base parameter

Alterations and Upgrades to PEST 14

bounds are set far apart in order to reduce their effect on the parameter estimation process
(either deliberately for the reasons outlined above, through user-laziness, or even as a result
of the unlikely, but not impossible, occurrence that a user did not read this section of the
manual), then use of options 3 or 4 may have disastrous consequences for the SVD-assisted
parameter estimation process. Hence option 2 is the safest SVDAPREP option. The user
should not forget, however, the benefits of setting SVDA_SCALADJ to 4 in conjunction with
a careful bounds setting strategy.

2.9 SVD-Assist: Externally-Defined Super Parameters
Total flexibility in definition of super parameters is available through having the eigenvectors
with which these super parameters are associated defined without reference to a PEST
control file, and its associated Jacobian matrix, altogether. This can be achieved through
setting a new SVD-Assist control variable SVDA_EXTSUPER to 1, and through supplying a
“super parameter definition matrix” in place of a base Jacobian matrix. The following
example shows the SVD-Assist section of a PEST control file in which these settings are
made.
* svd assist
temp1.pst
super.mat
1 0 1

The SVD-assist section of a super parameter PEST control file in which the
SVDA_EXTSUPER control variable is set to 1, and the name a super parameter
definition file is supplied in place of that of a base Jacobian matrix file.

The SVDA_EXTSUPER control variable is an integer which must be supplied as either 0 or
1. If omitted it is assumed to be zero.

If SVDA_EXTSUPER is set to 1 PEST does not undertake singular value decomposition of
an XtQX matrix for definition of directions in parameter space with which super parameters
are associated. Instead it reads these directions from a matrix file; the format for such a file is
described later in this addendum. If n super parameters are featured in a PEST control file,
then the directions in parameter space associated with these parameters are defined as the
first n columns of the matrix supplied in the matrix file. If more than n columns are featured
in this matrix, columns after the n’th are ignored.

The matrix file supplied to PEST as the super parameter definition file must meet certain
requirements. As already stated, it must have as many columns (or more) as there are super
parameters defined in the super parameter PEST control file; the names associated with these
columns are ignored. It must also have at least as many rows are there are base parameters
defined in the base parameter PEST control file. Furthermore each adjustable parameter
defined in the base PEST control file should have a matrix row associated with it (and linked
to it through equality of base parameter name and associated row name) in the super
parameter definition matrix file. It is not essential that these names be supplied in the same
order in both of these files. Nor does it matter if the super parameter matrix file contains extra
rows linked, perhaps, to fixed or tied base parameters, or to other parameters altogether.
However it is essential that no adjustable base parameter name be unmatched to a row of the
super parameter definition matrix file.

Alterations and Upgrades to PEST 15

Note the following:

1. It is important for the sake of calculation of derivatives with respect to base
parameters that all columns of the external super parameter definition matrix
have a magnitude of approximately 1. Use of the MATSVD utility described in a
later section can ensure this, at the same time as it ensures orthogonality of super
parameter vectors. Simply prepare a candidate matrix based, for example, on what are
judged to be the most important parameters and/or parameter combinations, and then
employ MATSVD to determine a complementary orthogonal, normalised matrix.

2. If SVDA_EXTJAC is set to 1 there is no role for the SVDA_SCALADJ variable.
Hence it is set to zero inside of PEST.

3. The SVD-assisted inversion process handles base parameter bounds imposition
slightly differently when super parameter directions are assigned externally, from the
way in which bounds imposition is handled when base parameter directions are
calculated by PEST. In the latter case super parameter directions are re-defined by
PEST when salient base parameters stuck to their bounds and are thus effectively
removed from the inversion process. In the former case super parameter re-definition
cannot take place. As a result, the inversion process may be a little slower under these
circumstances.

SVDAPREP has been slightly modified in order to provide the user with the option of using
an external super parameter definition file in place of a base parameter Jacobian file for super
parameter definition.

2.10 A New IREGADJ Option
As described in the PEST manual, a value for the IREGADJ variable can optionally be added
to the end of the “regularisation” section of the PEST control file; if this variable is not
present, its value is assumed to be zero. Experience has demonstrated that setting this
variable to “1” can be a very useful means of accommodating the presence of more than one
regularisation group within the PEST control file, for it is often a difficult matter for the user
to determine the appropriate weightings to use between these different groups. When
IREGADJ is set to 1, PEST takes account of both the number and sensitivities of
regularisation observations and prior information equations in each group in determining
relative inter-regularisation group weighting, so that the contribution made by each group to
the overall set of regularisation constraints is “balanced”. However its mechanism for
calculating these relative weights is by no means foolproof; nor is it such that it would not
benefit from user-assistance in some circumstances. An IREGADJ setting of “3” allows such
assistance to take place.

For any IREGADJ setting, PEST respects user-supplied relative observation and prior
information weights within any regularisation group. However it does not respect weights
between them, for it determines a weight multiplier specific to each group, independent of
user-specified relative inter-group regularisation weights as supplied through the PEST
control file. Thus when IREGADJ is set to 1 or 2 there is no need for the user to worry about
setting relative regularisation group weighting “properly”, because PEST overrides this

Alterations and Upgrades to PEST 16

weighting when calculating its own inter-group regularisation weight factors. Hence if a user
does not wish that regularisation weights vary within any regularisation group, there is no
reason why all regularisation weights should not be supplied with a value of 1.0 in the PEST
control file.

If IREGADJ is set to 3, PEST undertakes the same calculations for the purpose of relative
group weight factor calculation that it undertakes when IREGADJ is set to 1. However it then
undertakes a “final adjustment” of regularisation weights by multiplying them all by user-
supplied regularisation weights. Thus if, for example, a user supplies weights for group
regul1 which are twice those for regul2, PEST will multiply all weights within group regul1
by a factor of 2 relative to those in group regul1 after having calculated regularisation
weights for these groups using the procedure that is normally employed when IREGADJ is
set to 1. (All regularisation weights are then multiplied by the global regularisation weight
factor before parameter estimates are net upgraded.)

Setting IREGADJ to 3 has the potential to be very useful where there are many regularisation
groups. In such circumstances it is difficult for a user to determine a “balanced” set of inter-
regularisation group weight factors him/herself; the result may be poor PEST performance as
regularisation constraints fail to compensate for data inadequacy in formulating a well-posed
inverse problem. Although PEST may be able to do this quite comfortably itself on many
occasions using its normal IREGADJ functionality, it may nevertheless be the user’s desire
that regularisation constraints for some parameters be enforced more strongly than for others.
In these circumstances he/she can supply an initial set of weights that reflect this desire.
PEST will then alter its IREGADJ-calculated weights accordingly in the manner described
above.

It is apparent from the above discussion that it would be unwise for a user to supply
regularisation weights which are markedly different from group to group when IREGADJ is
set to 3, for the benefits of IREGADJ adjustment will be lost if internally-calculated relative
weights are varied too much from the “balanced” set calculated by PEST. It must be
remembered in formulating a weights assignment strategy for constructing the PEST control
file that PEST’s internal weights adjustment procedure will automatically take into account
the population of each regularisation group, and the composite sensitivity of each of the
observations or prior information equations comprising each regularisation constraint. When
IREGADJ is set to 3, it is the user’s task when supplying weights to the PEST control file to
provide a basis for relative inter-group weights “fine-tuning” that reflects his/her desirer for
certain constraints to be enforced more than others. However if such tuning prevents stable
solution of the inverse problem, then the desire for stronger enforcement of one set of
constraints over another must be abandoned and uniform regularisation weights supplied, or
IREGADJ set to 1.

2.11 Parallel PEST Run Repeats
If Parallel PEST encounters a problem in reading a model output file from a slave’s
subdirectory, it tries a number of times to read the file before giving up. Then, just in case the
problem originated in network congestion or some other troublesome network behaviour,
Parallel PEST repeats the model run on the same or another slave. A number of repetitions
are attempted before PEST terminates execution with an error message to the screen

Alterations and Upgrades to PEST 17

outlining the nature of the problem encountered.

Where model run times are long and the problem did not in fact originate in network
communication failure, this process can take a long time. There are instances where the user
would like to be made aware more quickly of such a problem so that he/she can take steps to
rectify it if, in fact, the source of the problem is in the model, or one of the components
thereof, rather than in the network. Parallel PEST now presents an option through which
repeated attempts to run the model are bypassed; instead PEST immediately terminates
execution with an appropriate error message. A new variable has been added to the Parallel
PEST run management file to activate this option.

The figure below illustrates the construction of a run management file. The second line now
contains five variables, the last two of which are optional. If the last variable (RUNREPEAT)
is set to 0, attempts at model run repetition as described above will not take place. If it is set
to any other number (or if it is omitted), attempted run repetition will take place.
prf
NSLAVE IFLETYP WAIT PARLAM RUNREPEAT
SLAVNAME SLAVDIR
(once for each slave)
(RUNTIME(I), I=1,NSLAVE)
Any lines after this point are required only if IFLETYP is nonzero; the
following group of lines is to be repeated once for each slave.
INFLE(1)
INFLE(2)
(to NTPFLE lines, where NTPFLE is the number of template files)
OUTFLE(1)
OUTFLE(2)
(to NINSFLE lines, where NINSFLE is the number of instruction files)

Structure of a Parallel PEST run management file.

It is important to note that if the RUNREPEAT variable is present in a PEST run
management file, then the PARLAM variable must also be present.

2.12 Covariance Matrix Files
As documented in the PEST manual, PEST is able to read an observation covariance matrix
file in place of weights. Enhancements to PEST have been made in order to now allow
covariance matrices to be supplied in files of two different formats. The existing format, as
documented in the PEST manual, is still supported; this requires that the matrix be supplied
in an ASCII file with space or comma delimited entries. In addition to this, PEST is now able
to read “matrix files” whose storage protocols are described later in this document. Thus the
covariance matrix used for specification of measurement uncertainty can be constructed and
manipulated using PEST’s new matrix handling utilities.

The following should be noted:-

1. PEST detects itself whether a matrix is supplied using the old format, or the newer
matrix file format.

2. The matrix supplied to PEST must be square and symmetrical. It must possess the
same number of rows and columns as there are observations in the observation group
to which it pertains.

Alterations and Upgrades to PEST 18

3. Matrix file protocol requires that rows and columns be named. PEST does not check
these names against the names of observations comprising the observation group to
which the matrix is assigned. Rows and columns in the covariance matrix must thus
be supplied in the same order as that in which associated observation or prior
information names are listed in the PEST control file. That is, items in the covariance
matrix file are linked by order or occurrence and not by name.

4. The matrix itself (or just its diagonal elements if the ICODE variable is supplied as -
1), is read using free field format.

5. If any errors are detected within the matrix file, PEST ceases execution with an
appropriate error message.

2.13 New Automatic User Intervention Default Settings
As is described in the PEST manual, automatic user intervention can be implemented simply
by adding the string “aui” to the eighth line of the PEST control file, just after the
PHIREDSWH variable. As well as this, if desired, an “automatic user intervention” section
can be added to the PEST control file in which values are assigned to variables which govern
the operation of PEST’s automatic user intervention functionality. If this section is not added,
PEST assigns default values to these control variables.

Default values for automatic user intervention control variables are now as set out in the table
below.

Variable name Default value

MAXAUI 0.75 times number of adjustable parameters

AUISTARTOPT 1

NOAUIPHIRAT 0.9

AUIRESTITN 0

AUISENSRAT 5.0

AUIHOLDMAXCHG 0

AUINUMFREE 3

AUIPHIRATSUF 0.8

AUIPHIRATACCEPT 0.99

NAUINOACCEPT 0.75 times MAXAUI

Default settings for automatic user intervention control variables.

The settings supplied in the above table are such as to cause PEST to make every effort
possible to lower the objective function on every iteration. Hence computation times may be

Alterations and Upgrades to PEST 19

greatly lengthened (especially as the automatic user intervention process is not
parallelisable). Hence, in certain circumstances, the user may wish to supply different values
for these variables in order to reduce the number of model runs required per optimisation
iteration.

2.14 Inclusion of Predictive Noise in Predictive Analysis Process

2.14.1 General

Authors such as Vecchia and Cooley (1987) discuss the difference between a predictive
confidence interval and a prediction interval. The former is the “wiggle room” in a model
prediction that is allowed by the presence of measurement noise in data employed in the
model calibration process. This is the only interval calculated by previous versions of PEST’s
predictive analyser in which a user-specified prediction is maximised or minimised while
maintaining the model in a “calibrated state” at a certain level of confidence. The means by
which this level of confidence is calculated is presented below.

Unfortunately, the predictive confidence interval takes no account of the fact that a model
cannot replicate the operation of an environmental system exactly. Associated with every
prediction that a model makes is a certain degree of “predictive noise”. Part of this noise
(probably the greater part) is the result of model inadequacies. Part of it is attributable to the
fact that if a field measurement were made corresponding to the model prediction, then a
certain amount of noise would be associated with that measurement. In establishing an
interval about a model prediction that would encompasses this actual measurement at a
certain level of confidence, this noise must be taken into account.

Where a prediction is of the same or similar type to measurements employed in the
calibration process, the variance of predictive noise (if it can be assumed to be the same as
that of measurement noise) is estimated through the calibration process. Suppose that the
minimised objective function obtained through overdetermined inversion is Фmin. Suppose
also that each measurement weight employed in the inversion process is proportional to the
inverse of the standard deviation of the measurement to which it pertains. PEST calculates a
reference variance as:

 σr
2 = Фmin/(n-m) (2.1)

where n is the number of observations on which calibration is based and m is the number of
estimated parameters. If the weight assigned to the i’th observation is wi, then its standard
deviation is thus estimated as:

 σi = (√σr
2)/wi (2.2)

Where a prediction is of an entirely different type to measurements employed in the
calibration process, then the level of noise associated with that prediction (in most cases
resulting from incapacity of the model to simulate all details of system behaviour which
pertain to this prediction) must be guessed.

Alterations and Upgrades to PEST 20

2.14.2 One Methodology for Accommodation of Predictive Noise

One way in which the presence of predictive noise can be accommodated in the predictive
uncertainty analysis process is to add an extra parameter, e to the existing PEST parameter
set prior to undertaking that process. This parameter is actually the “predictive error”
associated with the prediction that is to be maximised or minimised. The “estimated value”
for e (which would normally be supplied as its initial value), is zero. A prior information
equation would then be added to the inversion process in which e was equated to zero. The
weight assigned to this prior information equation would be such that when its inverse was
multiplied by the square root of the reference variance, the standard deviation of predictive
noise is obtained. Or, looking at it another way, the inverse of the weight assigned to this
prior information equation should bear the same relationship to predictive noise standard
deviation as the inverse of observation weights employed in the calibration process bear to
their respective measurement errors.

A new template file would then be prepared which would allow PEST to record the current
value of e prior to each model run. Alternatively, the value of e could be written to an
existing model input file using a slightly modified existing template file; the model would
then need to be modified to read this value. Functionality would then be added to the model
(or to a model postprocessor) through which e was added to the model-calculated prediction.
This new noise-augmented prediction would then be read by PEST as the quantity to be
maximized or minimized through the predictive analysis process. In maximising/minimising
the prediction within the objective function constraints allowed to it, PEST would then have
the choice of increasing/decreasing the actual model output corresponding to this prediction,
or the error associated with this prediction or, more likely, a combination of the two.

2.14.3 An Alternative Methodology

The constrained maximization/minimization algorithm which underpins PEST’s predictive
analyser has been enhanced so that the same outcomes as the above process can be achieved
without making significant modifications to the PEST predictive analysis input dataset, and
without needing to augment the model’s functionality such that it adds noise to the selected
predictive output. This methodology is based on theory presented in Vecchia and Cooley
(1987) for achieving this aim.

Suppose that a prediction s is calculated from model parameters encapsulated in the vector p
using the linearised model equation:-

 s = ytp (2.3)

where y is a vector of sensitivities of the model prediction to each of the parameters
encapsulated in p; predictive and parameter offsets are ignored in this and following
equations. Suppose that we wish to maximize the model output corresponding to this
prediction while constraining the objective function (which, for the moment, will be assumed
NOT to include a contribution from predictive noise e) to be no higher than Ф0. Then p
corresponding to the maximised/minimised prediction can be shown to be calculable as:-

Alterations and Upgrades to PEST 21

()






 −=

−

λ2
t1t yQhXQXXp (2.4)

where:-

()

() yQXXy

QhXQXXQXhQhh
1tt

t1ttt
0

2

2
1

−

−
+−Φ

±=






λ

 (2.5)

and the h vector is comprised of observations employed in the calibration process (once again
with offsets ignored). The positive or negative square root of (1/2λ)2 is chosen depending on
whether prediction maximization/minimization is being performed. These are the same
equations as those presented in Chapter 2 of the PEST manual.

Where Ф0 includes the effect of predictive error (and therefore includes the term (wee)2 where
we is the weight assigned to predictive noise and e is the predictive error itself) equation (2.4)
is still employed to calculate p. However (2.5) becomes:-

()

() 21tt

t1ttt
0

2

2
1

−−

−

+

+−Φ
±=








ewyQXXy

QhXQXXQXhQhh
λ

 (2.6)

while the actual predictive error e is calculated as:-

 e = -we
-2/2λ (2.7)

For nonlinear models equations 2.4 to 2.7 are solved for p using an iterative procedure in
which X, y and h (which is actually replaced by the residuals vector r) are updated during
every optimisation iteration in accordance with current values of p.

2.14.4 Objective Function Constraints

Vechhia and Cooley (1987) and Christensen and Cooley (1999) discuss the difference
between simultaneous (or Scheffé) confidence/prediction intervals and individual
confidence/prediction intervals. A simultaneous parameter confidence region is an m-
dimensional region in parameter space bounded by a surface of constant objective function
value (which is an ellipsoid for a linear model) within which, at a nominated level of
confidence, all parameters lie. The projections of this surface onto different parameter axes
define the Scheffé confidence intervals for these parameters. The Scheffé 1-α confidence
interval for a prediction is defined as the interval between the maximum and minimum
prediction that can be made by the model using parameters that lie within the joint parameter
confidence region pertaining to a nominated 1-α probability level. The simultaneous
prediction interval includes predictive noise as a notional parameter in this process, and as an
augmenter of the prediction, in the manner described above.

The 1-α individual confidence interval of a parameter is simply the range of values, centred
on the best parameter estimate, within which the parameter lies at a confidence limit of 1-α,
irrespective of values taken by other parameters. The 1-α individual confidence limit of a
prediction is defined as the range of predictive values for which the combination of

Alterations and Upgrades to PEST 22

parameters that gives rise to the prediction is within the 1-α confidence interval for that
combination of parameters. Individual predictive intervals take predictive error into account
as both a notional parameter and a prediction augmenter as discussed above. Individual
confidence and predictive intervals are smaller than simultaneous intervals at the same level
of confidence.

Values of Ф0 for 1-α simultaneous confidence and prediction intervals respectively are given
by:-

 () 



 +−

−
Φ=Φ 1,min0 mnmF

mn
m

α (2.8)

and

 () 



 +−+

−
+

Φ=Φ 1,11
min0 mnmF

mn
m

α (2.9)

Where “F(m,n-m)” refers to the F distribution with (m,n-m) degrees of freedom and Φmin is
the minimized objective function as calculated during the calibration process (which must
precede the predictive analysis process).

For individual (1-α) predictive confidence and prediction intervals respectively, the following
equations apply:-

()

() 







+

−
−

Φ=Φ 1
2

2/
min0 mn

mntα (2.10)

and

()
() 








+

−
−

Φ=Φ 1
2

2/
min0 mn

mntα (2.11)

Where t(m-n) signifies a t distribution with (n-m) degrees of freedom. Obviously equation
(2.11) is identical to (2.10). However in the latter case the predictive error term (ewe)2 is
included in the objective function Ф (as it is in equation 2.9); note however that its
contribution to Φmin is zero due to the fact that e is zero at the calibration objective function
minimum. Christensen and Cooley (1999) and Cooley (2004) point out that a correction
factor should be applied to the right side of equations 2.10 and 2.11 to accommodate
nonlinear model behaviour. However they also point out that this factor is mostly close to
1.0; hence it will be ignored in the present work.

2.14.5 Implementation in PEST

Calculation of the confidence interval for a particular prediction is simply a matter of using
PEST’s predictive analyzer as described in the PEST manual, and employing Ф0 of equation
(2.8) or equation (2.10) as the PD0 predictive analysis control variable.

Alterations and Upgrades to PEST 23

Calculation of prediction intervals is only slightly more complex. In this case Ф0 of equation
(2.9) or equation (2.11) must be employed for PD0. Furthermore, the weight assigned to the
observation comprising the sole member of the observation group “predict” must be correct
in terms of its characterisation of predictive noise in the current calibration context, for PEST
does not ignore this weight when calculating prediction intervals as it does when calculating
confidence intervals, instead adopting it as we in the above equations. As discussed above,
this weight must bear the same relationship to predictive noise as observation weights bear to
observation noise. Finally, a new PEST control variable named PREDNOISE must be set to
1. The location of the PREDNOISE variable in the “predictive analysis” section of the PEST
control file is illustrated in the figure below.
* predictive analysis
NPREDMAXMIN PREDNOISE
PD0 PD1 PD2
ABSPREDLAM RELPREDLAM INITSCHFAC MULSCHFAC NSEARCH
ABSPREDSWH RELPREDSWH
NPREDNORED ABSPREDSTP RELPREDSTP NPREDSTP

Predictive analysis section of the PEST control file showing the location of the
PREDNOISE variable.

If PREDNOISE is supplied as zero (or not supplied at all), PEST will not take predictive
error into account when maximising the user-specified prediction. However if it is set to 1,
then PEST’s behaviour in conducting the predictive analysis maximisation/minimisation
process is slightly altered. In particular:-

1. The reported objective function is now the normal model-to-measurement misfit
objective function plus the contribution from predictive error, i.e. (ewe)2

.

2. The reported prediction is now the model output specified as the prediction, plus the
predictive noise term e.

3. The current value of e is reported with the prediction as the optimisation process
progresses.

In all other respects, operation of PEST is outwardly the same when PREDNOISE is set to 1
as it is when PREDNOISE is set to zero.

Irrespective of the PREDNOISE setting serious consideration should be given to employing a
line search in the predictive analysis process (not withstanding its high cost in terms of model
runs). Variables controlling this line search procedure should be assigned in accordance with
the discussion presented earlier in this addendum (see Section 2.4).

Limited experience to date in comparing the performance of PEST’s internal accommodation
of the predictive noise term with the more lengthy procedure described in Section 2.13.2,
suggests paradoxically, that the latter is slightly more efficient, and provides slightly
higher/lower maximised/minimised predictions. It is thought that this is due to better
accommodation of the nonlinear nature of the problem, particularly in implementing the line
search, when the e parameter is re-calculated at each stage of this search, instead of being re-
calculated only when a different Marquardt lambda is employed in the parameter calculation
process as occurs for internal implementation of this procedure. However, fortunately,
differences between the two outcomes do not appear to be great.

Alterations and Upgrades to PEST 24

2.15 Starting a New PEST Run Using and Old Jacobian
There are many occasions on which a PEST run is commenced, only for the user to realise as
soon as the first parameter upgrade is attempted, that different settings should have been
employed for that run. For example, a PEST control variable should have been set
differently; or perhaps PEST should have been asked to use truncated singular value
decomposition as a regularisation device instead of Tikhonov regularisation. On such
situations the PEST run is then halted before the second optimisation iteration begins, or at an
early stage of this iteration where parameter sensitivities are being calculated through
repeated model runs; the PEST control file is then edited, and PEST is re-started.
Unfortunately, this is a wasteful procedure, for then PEST calculates parameter sensitivities
for initial parameter values all over again (assuming that these have not been changed) before
recalculating parameter upgrades on the basis of the new inversion settings.

Re-calculation of sensitivities for initial parameter values can now be avoided if PEST is re-
started using the “/i” switch. In this case PEST immediately prompts for the name of a JCO
file (i.e. an unformatted file in which the Jacobian matrix is stored – see the PEST manual for
further details), from which it can read initial parameter sensitivities. When the time comes to
calculate the first set of parameter derivatives, PEST then reads them from this file instead of
calculating them by finite differences or reading them from a derivatives file. For all
subsequent iterations, however, it calculates sensitivities in the normal manner.

If a PEST run has been halted after calculation of the first Jacobian matrix, it is a good idea to
copy the JCO file to a file of another name. This will prevent it from being destroyed or
overwritten next time PEST is run on the same case. The file is thus always available for use
during the first iteration of subsequent PEST runs. The usefulness of this file as a powerful
means to save repetition of the first inversion iteration is heightened by the fact that
subsequent PEST cases that can use it for this purpose need not employ the same prior
information equations as were used (or not) in the initial PEST run on whose basis the initial
JCO file was stored, for PEST always calculates prior information sensitivities internally. All
that is required is that the new PEST run employ the same adjustable parameters (in the same
order) and the same observations (in the same order) as the old PEST run; PEST will soon
inform you if this is not the case. However it is also important that the log-transformation
status of parameters does not change between PEST runs; this is a condition that PEST
cannot detect, and so the user must ensure that this is the case him/herself. However
observations weights can change between the PEST run that produced the stored JCO file,
and any subsequent run that uses it.

To start a new PEST run using an old Jacobian matrix for the initial iteration, run PEST using
the command:-
 pest case.pst /i

where case is the filename base of the current PEST case. As soon as it commences
execution, PEST will prompt:-
Enter name of JCO file for first iteration sensitivities:

to which you should respond with the name of a JCO file produced during (normally the first
iteration) of a previous PEST run. As stated above, while the name of this file can be case.jco
where case is the filename base of the current PEST case, this is a very dangerous procedure

Alterations and Upgrades to PEST 25

due to the likelihood of this file being destroyed or overwritten. It is far better to rename a
JCO file that is to be re-used for initialisation of subsequent PEST runs in this manner.

2.16 Partial Parallelisation of the Lamdba Search
The figure below shows the structure of the parallel PEST run management file.

Structure of the Parallel PEST run management file.

The last variable on the second line of this file informs PEST whether or not it should
partially parallelise the procedure through which it tests the effects of different Marquardt
lambdas in lowering the objective function. If this is set to zero, or omitted, partial
parallelisation of the lambda search is disabled. If it is set to 1, the partial parallelisation
process is enabled.

Where the number of slaves involved in the parallelisation process is high, it is wise to limit
the number of these slaves which actually become involved in the Marquardt lambda testing
procedure. One reason for this is that, with so many different lambdas being simultaneously
tested, it is possible for some to yield upgrade vectors containing parameters which create
problems for the model. In general, the further is a tested lambda from the current lambda,
the more likely is this to happen. Problems could include slower model convergence or even
model failure. Fortunately this can now be easily prevented.

PARLAM can now be set to a negative number. As long as it is non-zero, partial
parallelisation of the lambda search procedure will be activated within PEST. However the
number of slaves involved in this lambda search procedure will be limited to the absolute
value of PARLAM. Thus, for example, if parallelisation is being undertaken using 50 slaves,
and if PARLAM is set to -4, then only 4 slaves will be involved in the partial parallelisation
of lambda testing.

2.17 New NOPTMAX Setting
In the past, to run PEST solely for the purpose of calculating a Jacobian matrix, NOPTMAX
had to be set to -1. With NOPTMAX thus set, as well as filling the Jacobian matrix, PEST
also calculates the parameter covariance, correlation coefficient and eigenvalue matrices, as
well as statistics derived from these. Residuals, and statistics based on residuals, are written

prf
NSLAVE IFLETYP WAIT PARLAM
SLAVNAME SLAVDIR
(once for each slave)
(RUNTIME(I), I=1,NSLAVE)
Any lines after this point are required only if IFLETYP is nonzero; the
following group of lines is to be repeated once for each slave.
INFLE(1)
INFLE(2)
(to NTPFLE lines, where NTPFLE is the number of template files)
OUTFLE(1)
OUTFLE(2)
(to NINSFLE lines, where NINSFLE is the number of instruction files)

Alterations and Upgrades to PEST 26

to the run record file. Furthermore, a final model run is undertaken based on “optimised
parameters” (in this case initial parameters) so that model input and output files remaining
after the PEST run is complete pertain to these parameters.

Where sensitivities are being calculated on the basis of base parameters prior to an SVD-
assisted PEST run, there is no need for these statistics to be calculated. Not only is the user
unlikely to be interested in them, but where there are many base parameters their
computation (particularly those of the covariance and related matrices) may take a
considerable amount of time. Calculation of these can now be avoided through setting
NOPTMAX to -2 instead of -1. In this case, PEST terminates execution as soon as the
Jacobian matrix has been calculated and recorded in the pertinent JCO file.

2.18 New RLAMFAC Setting
Operation of the Marquardt lambda is governed by variables which appear on the sixth line
of the PEST control file. In normal operation, during each optimisation iteration, the
Marquardt lambda is varied either up or down (or both if necessary) in search of a value that
provides the largest reduction in the objective function (unless the initial Marquardt lambda
is set to zero, in which case it is not varied from this value during the entirety of a PEST run).
In undertaking these variations, PEST multiplies or divides the Marquardt lambda by a
factor, the value for which is supplied as the RLAMFAC variable. This variable must always
have a value greater than 1.0.

In some instances it is apparent that when the Marquardt lambda is very high, it may need to
be varied by more than the same factor by which it is varied when it is low. This has been
found especially when undertaking parameter estimation with SVDMODE set to 2 (see
below). In this case the Marquardt lambda serves as a regularisation variable which is added
to singular values rather than normalised and then added to the diagonal terms of the XtQX
matrix. Limited experience suggests that when it is required for stabilization of the inverse
problem, it sometimes needs to be high – so high that it dominates the singular values to
which it is added. When it is then varied in an attempt to lower the objective function as
much as possible, it needs to be varied by a large amount to have any effect on the
calculation of new parameters.

It has also been found to be useful in conjunction with PEST’s AUI functionality, and on
other occasions where ill-posedness of the inverse problem requires that the Marquardt
lambda be rapidly raised in order to promote lowering of the objective function.

In response to this requirement, a new methodology is now offered for Marquardt lambda
adjustment. This is activated by setting the value for RLAMFAC to a negative number – a
number whose absolute value must be greater than 1.0 (just as in the case of standard
operation of the Marquardt lambda). When set to a negative value in this way, the Marquardt
lambda adjustment factor f is re-calculated during every iteration of the parameter estimation
process as follows:-

 f = min[λ1/r, 2.0] if λ > 1.0

 f = min[(1/λ)1/r, 2.0] if λ < 1.0

Alterations and Upgrades to PEST 27

 f = 2.0 if λ = 1.0

where λ is the value of the Marquardt lambda at the beginning of a particular optimisation
iteration and r is the absolute value of the user-supplied RLAMFAC variable. Operation of
this variable is easily pictured by the fact that, whether λ begins an iteration with its value
above or below 1.0, its value will have reached 1.0 after r multiplications or divisions by
RLAMFAC (provided this is the direction in which PEST decides to move it). Thus, for
example if RLAMFAC as supplied in the “control data” section of the PEST control file is
set to -2.0 and the value of λ is 1000.0 at the start of a particular optimisation iteration, the
Marquardt lambda adjustment factor is temporarily set to 31.62 for that iteration. Note,
however that, as indicated in the above equations, it will never be set lower than 2.0.

When using this new setting it is important to note that the higher the absolute value assigned
to a negative RLAMFAC, the smaller will be the actual iteration-dependent Marquardt
lambda adjustment factor. This is opposite to the case for a positive setting of RLAMFAC. In
both cases however, the absolute value of RLAMFAC must be greater than 1.0.

2.19 New Setting for SVDMODE
SVDMODE in the “singular value decomposition” section of the PEST control file can now
be set to 2 as well as 1; in both cases solution of the inverse problem takes place through
singular value decomposition. For a setting of 2, singular value decomposition takes place on
the basis of Q1/2X rather than XtQX (as it does for a setting of 1). This is much faster in cases
where parameters outnumber observations (and even in cases of large numbers of
observations where formation of the XtQX matrix is a numerically tedious task).

Setting SVDMODE to 2 has a number of other repercussions. These are now outlined.

1. On the basis of limited experience, it has been found that where SVD is employed for
solution of an underdetermined inverse problem, some kind of solution damping is
required in addition to the regularizing effects of SVD, especially where there are
many parameters. In normal PEST operation (and with SVDMODE set to 1) this task
is accomplished using the Marquardt lambda, whereby a scaled diagonal term is
added to the diagonal of the XtQX matrix before it is inverted (or decomposed). With
SVDMODE set to 2 damping is still undertaken and, as far as PEST output is
concerned, the damping parameter is still assigned the term “Marquardt lambda”.
However this damping variable cannot be added to the XtQX matrix, because this
matrix is never formed. Instead it is added to all singular values of Q1/2X before
solving for the parameter upgrade vector. Based on limited testing, this strategy
appears to work well. However it should be noted that the damping parameter is not
normalized before addition to these singular values, and hence its value is not directly
comparable between one PEST run and another. (Normalisation with respect to the
highest singular value was attempted, but did not seem to work well.) Providing
RLAMFAC with a negative value (see the preceding section) often assists in the
efficiency of finding an optimal damping variable at any given stage of the parameter
estimation process as it allows rapid variation of the Marquardt lambda during any
optimisation iteration in search of its optimum value.

Alterations and Upgrades to PEST 28

2. If SVDMODE is set to 2, memory conservation is automatically activated. Hence the
covariance matrix, and matrices derived from it, are not listed at the bottom of the
PEST control file. Nor are they written to the MTT file.

3. As for an SVDMODE setting of 1, PEST records an abundance of information to the
“SVD file”, the amount of this information being governed by the setting of the
EIGWRITE variable. If this is set to zero, eigenvectors are not recorded; if it is set to
1, eigenvectors are written to this file. However whereas the number of eigenvectors
recorded in this file is equal to the number of adjustable parameters when SVDMODE
is set to 1, if the number of observations plus prior information equations is smaller
than this, then the number of eigenvalues/eigenvectors recorded in the SVD file is
restricted to the total number of observations plus prior information equations. (This
is also the maximum number of dimensions that the parameter solution space can
hold.)

2.20 Using LSQR instead of Truncated SVD
The LSQR algorithm (Paige and Saunders; 1982a, 1982b) can be employed to implement
regularised inversion when running in “parameter estimation” mode, just as truncated SVD
can be employed to do the same thing. This is done by introducing an “lsqr” section to the
PEST control file in place of (or directly underneath) a “singular value decomposition”
section. An example of an “lsqr” section is shown below. The names of the PEST variables
appearing in it are shown under that.
* lsqr
1
1e-10 1e-10 1e3 10000
1

Example of an LSQR section of a PEST control file
* lsqr
LSQRMODE
LSQR_ATOL LSQR_BTOL LSQR_CONLIM LSQR_ITNLIM
LSQRWRITE

Variables used in the LSQR section of the PEST control file.

The role of each of the variables appearing in the “lsqr” section of the PEST control file is
now described.

LSQRMODE

This must be set to 0 or 1. If it is set to 1, LSQR is employed for solution of the inverse
problem. The LSQR algorithm is applied to the matrix Q1/2X where X is the Jacobian matrix.

LSQR_ATOL

This is the LSQR atol input variable (a real number), described in its documentation as
follows.

Alterations and Upgrades to PEST 29

An estimate of the relative error in the data defining the matrix A. For example, if A
is accurate to about 6 digits, set atol to 1.0e-6.

LSQR_BTOL

This is the LSQR btol input variable (a real number), described in its documentation as
follows.

An estimate of the relative error in the data defining the rhs vector b. For example, if
b is accurate to about 6 digits, set btol to 1.0e-6.

LSQR_CONLIM

This is the LSQR conlim input variable (a real number), described in its documentation as
follows.

An upper limit on cond(A), the apparent condition number of the matrix A. Iterations
will be terminated if a computed estimate of cond(A) exceeds conlim. This is intended
to prevent certain small or zero singular values of A or A from coming into effect and
causing unwanted growth in the computed solution.

Conlim and damp may be used separately or together to regularize ill-conditioned
systems.

 Normally, conlim should be in the range 1000 to 1/relpr. Suggested values are:

conlim = 1/(100*relpr) for compatible systems,

conlim = 1/(10*sqrt(relpr)) for least squares.

where relpr is the relative precision of floating-point arithmetic on the machine being
used. On most machines, relpr is about 1.0e-7 and 1.0d-16 in single and double
precision respectively.

LSQR_ITNLIM

This is the LSQR itnlim input variable (an integer), described in its documentation as
follows:-

An upper limit on the number of iterations; suggested values are:

itnlim = n/2 for well-conditioned systems with clustered singular values;

itnlim = 4*n otherwise.

where n is the number of columns in the matrix A.

LSQRWRITE

If set to 1, output from the LSQR solver will be written to a file named case.lsq where case is

Alterations and Upgrades to PEST 30

the filename base of the current PEST control file. Information from each call is appended to
this file; hence it can become quite lengthy. If this file is not desired, set LSQRWRITE to 0.

A few more words, borrowed from LSQR documentation, serve to explain some of the
notation employed above.

LSQR finds a solution x to the following problems:

1. Unsymmetric equations - solve Ax = b;

2. Linear least squares - solve Ax = b in the least-squares sense;

3. Damped least squares - solve 







=








0
b

x
I

A
λ

 in the least-squares sense;

where A is a matrix with m rows and n columns, b is an m-vector, and λ is a scalar. A and b

are defined as 







I

A
λ

and 







0
b

respectively.

In the PEST context, n is equivalent to the number of adjustable parameters, and m is
equivalent to the number of non-zero-weighted observations plus prior information
equations.

Note the following.

1. PEST will not allow LSQR to be employed for solution of an inverse problem if
automatic user intervention is activated, or if PEST is run in “predictive analysis”
mode.

2. PEST permits a “singular value decomposition” section and an “lsqr” section to exist
in the same PEST control file. However it does not permit both of SVDMODE and
LSQRMODE to have non-zero values; but it does allow both of them to be
simultaneously set to zero.

3. In setting values for LSQR control variables, do not forget that the numerical
accuracy of terms of the A matrix is set by the accuracy of derivatives calculation.
This is determined by the model if derivatives are supplied externally. However if
finite differences are employed for calculation of derivatives, the numerical precision
of the elements of A will probably be of the order of 10-2 or 10-3 at best.

4. Do not forget that observations through which parameters are inferred are
contaminated by measurement noise. This has repercussions for the setting of the
lsqr_btol and lsqr_conlim variables. In short, the more contaminated by noise is the
observation dataset, the fewer LSQR iterations may be suitable for solution of an
inverse problem.

5. The user is not given the opportunity to supply a value for the LSQR damp variable.
Rather this is supplied to the LSQR subroutine as the current value of the Marquardt
lambda. Its value is reported to the screen and to the PEST run record file. Variables

Alterations and Upgrades to PEST 31

which control is value can be supplied in the “control data” section of the PEST
control file in the usual manner.

6. If inversion is undertaken using LSQR, PEST memory conservation is automatically
implemented. Thus items such as the parameter covariance matrix (which is not of
much use in the regularised inversion context) are not listed to the run record file, the
matrix (MTT) file is not written, etc.

2.21 Greater Flexibility of Compressed Matrix Storage
If the MAXCOMPDIM variable in the “control data” section of the PEST control file is
assigned a value greater than 1, PEST stores the Jacobian matrix in compressed form. Using
this storage format, zero-valued elements are omitted. This can result in the ability to hold a
matrix of far larger dimensions than would otherwise be possible, especially where a long
series of prior information equations citing only a small number of parameters is employed
for regularisation purposes. A problem arises however, in knowing what value to give to
MAXCOMPDIM. This informs PEST how many elements it must set aside for Jacobian
matrix storage. If this number is set too high, storage is wasted. If it is set too low, PEST
ceases execution with an error message when allocated storage is full.

It is often difficult to know ahead of time how many non-zero elements the Jacobian matrix
will possess. In previous versions of PEST it was necessary to re-commence execution from
the very start of the parameter estimation process when this error message was encountered.
Hence any model runs already undertaken in Jacobian matrix computation were wasted. In
versions later than 11.0, PEST execution can be re-commenced using the “/s” or “/d” switch
after altering MAXCOMPDIM upwards in the PEST control file. Thus no model runs are
lost.

2.22 SVDA - Automatic Super Parameter Derivatives
Computation
Under certain circumstances it is possible to eliminate the need to calculate super parameter
sensitivities by finite differences on the first iteration of an SVD-assisted parameter
estimation exercise. In particular, if

1. SVDA_EXTSUPER is set to a value other than 1, indicating that super parameters are
calculated by PEST on the basis of a base parameter Jacobian matrix, and

2. this matrix pertains to the same observations and prior information equations as those
featured in super parameter PEST control file,

then derivatives of super parameters can be calculated from base parameter sensitivities,
eliminating the need for them to be calculated using finite differences. Fortunately, these are
the most common conditions in which SVD-assisted parameter estimation is undertaken.

A new control variable in the “SVD-assist” section of the PEST control file activates the
functionality whereby PEST is able to dispense with finite-difference calculation of super
parameter sensitivities during its first iteration, calculating these from base parameter

Alterations and Upgrades to PEST 32

sensitivities instead. The name of this variable is SVDA_SUPDERCALC; it is the fourth
variable to appear on the third line of this section (immediately following the
SVDA_EXTSUPER variable (see below for a refresher on SVDA control variables). If it is
omitted or set to zero, then super parameter derivatives calculation takes place through finite
differences in the usual manner during the first optimisation iteration of the inversion
process. However if it is set to 1, then PEST calculates super parameter derivatives internally
for the first iteration of the SVD-assisted parameter estimation process, removing the
necessity for any model runs to be undertaken in calculating these derivatives.

The SVDA_SUPERDERCALC variable is recorded in bold in the “SVD assist” section of
the PEST control file reproduced below.
* svd assist
case.pst
case.jco
0 2 1 1
The SVDAPREP utility has been upgraded to reflect this new aspect of PEST’s SVD-assist
functionality. Unless the user informs SVDAPREP that super parameters are to be supplied
externally, it now prompts:-
Automatic calc. of 1st itn. super param. derivs? [y/n] (<Enter> if "y") :

If the user responds with “y” or <Enter> to this prompt, SVDA_EXTSUPER is set to 1 in the
SVDAPREP-generated PEST control file. Otherwise it is set to 0.

2.23 SVDA – Super Parameter Definition through SVD
As has been explained elsewhere, the last line of the “SVD assist” section of a PEST control
file contains four variables, the third of which is named SVDA_EXTSUPER. This variable
informs PEST how super parameters are to be formed. If SVDA_EXTSUPER is set to 1, then
super parameters are read from an external file. However if it is set to any other value, these
are calculated internally by PEST on the basis of sensitivities supplied in the Jacobian matrix
whose name appears on the previous line of the PEST control file (with any sensitivities
pertaining to regularisation observations omitted from this calculation).

In previous versions of PEST, setting SVDA_EXTSUPER to zero caused PEST to formulate
super parameters through singular value decomposition of XtQX, where X represents the
base parameter Jacobian matrix contained in the nominated base Jacobian matrix file. PEST
functionality is now such that these are calculated on the basis of Q1/2X instead. The result
should be the same; however their computation will often be much quicker, especially where
parameters outnumber observations. Also, memory requirements can be much smaller.

Should the user desire that super parameter definition take place on the basis of XtQX, this
can be requested by setting SVDA_EXTSUPER to 3.

2.24 SVDA - Using LSQR for Super Parameter Definition
If SVDA_EXTSUPER is set to 2, PEST calculates super parameters using the first m “v”
vectors computed by the LSQR algorithm, where m is the number of super parameters cited
in the PEST control file. If SVDA_EXTSUPER is set to -2, these vectors are orthogonalised
before being employed for definition of super parameters.

Alterations and Upgrades to PEST 33

In cases where the number of base parameters is every high, use of the LSQR algorithm for
super parameter definition may result in faster computation of these parameters.

SVDAPREP’s operations have been slightly altered to reflect this new functionality (as well
as that discussed in the previous section of this addendum). If the user indicates to
SVDAPREP that a pre-defined super parameter file does not exist, SVDAPREP asks the user
how PEST should calculate super parameters. The following options are provided:-
 For computation of super parameters:-
 if SVD on Q^(1/2)X - enter 1
 if SVD on XtQX - enter 2
 if LSQR without orthogonalisation - enter 3
 if LSQR with orthogonalisation - enter 4
 Enter your choise (<Enter> if 1):

These options correspond to SVDA_SUPDERCALC settings of 0, 3, 2 and -2 respectively.

2.25 SVDA - A Refresher on Control Variables
Four SVDA control variables appear on the third line of the “SVD assist” section of the
PEST control file. These are (in order of appearance on this line):-
SVDA_MULBPA SVDA_SCALADJ SVDA_EXTSUPER SVDA_SUPDERCALC

For ease of reference, their roles are briefly repeated. Note that all of them are integers.

SVDA_MULBPA

SVDA_MULBPA must be set to either 0 or 1. If it is set to 1 then a series of “BPA files” is
be recorded in the course of the parameter estimation process, each containing base
parameter values as estimated during subsequent iterations.

SVDA_SCALADJ

This must be set to ±4, ±3, ±2, ±1 or 0. It sets the type of parameter scaling that is undertaken
in super parameter definition. Where some parameters are not log-transformed, parameter
scaling is essential.

SVDA_EXTSUPER

The SVDA_EXTSUPER control variable stipulates the manner in which super parameters
are computed; it must be set to 0, 1, 2, -2 or 3. If it is set to 0 PEST computes super
parameters on the basis of singular value decomposition of Q1/2X where X is the user-
supplied base Jacobian matrix. If it is set 1 PEST reads super parameter directions from an
external file. If it is set to 2 PEST computes super parameters on the basis of “v” vectors
computed by the LSQR algorithm. These are first orthogonalised if SVDA_EXTSUPER is
set to -2. If it is set to 3 PEST computes super parameters on the basis of XtQX.

SVDA_ SUPDERCALC

This must be 1 or 0. If it is set to 1 (and SVDA_EXTSUPER is not set to 1), PEST calculates
super parameter derivatives from base parameter derivatives during the first optimisation
iteration of the parameter estimation process. This saves as many model runs as there are

Alterations and Upgrades to PEST 34

super parameters.

2.26 SVDA – Model-Calculated Derivatives

2.26.1 General

In previous versions of PEST the use of external derivatives functionality in conjunction with
SVD-assisted parameter estimation was not allowed. This was based on the fact that when
undertaking SVD-assisted parameter estimation PEST is actually estimating values for super
parameters (of which the model has no knowledge) while the model supplies derivatives with
respect to base parameters.

Model-generated derivatives can now be employed when PEST is undertaking SVD-assisted
parameter estimation, provided super parameters are not supplied externally (i.e. provided
SVDA_EXTSUPER is not set to 1). When this is done PEST re-formulates super parameters
during each iteration of the SVD-assisted parameter estimation process, and calculates
derivatives with respect to these super parameters on the basis of the same linear
combinations of base parameters as are employed for definition of the super parameters
themselves.

External derivatives functionality is activated in the same way as it is for non-SVD-assisted
parameter estimation. That is, the JACFILE variable on the fifth line of the PEST control file
is set to 1. As well as this, the DERCOM value for all super parameters in the “parameter
data” section of the PEST control file should be set to zero; thus PEST is prevented from
calculating any super parameter derivatives by finite differences.

The following should be noted.

1. In normal operation, PEST allows two non-zero JACFILE settings. If JACFILE is set
to 1 then derivatives are expected in PEST derivatives file format. If it is set to 2,
derivatives are expected in JUPITER derivatives file format. At present, the second
option is not allowed with SVDA. This is not expected to be a disadvantage, for there
is a large computational overhead in reading a JUPITER derivatives file because
parameters and observations can, theoretically, be arranged in any order.

2. When used in a non-SVDA context, a value of -1.11e33 in an external derivatives file
indicates that the derivative is not supplied in that file; it is then presumed that PEST
calculates the derivative using finite parameter differences. This option is not
available when external base parameter derivatives are supplied in the SVDA setting,
because PEST has no way of calculating finite-difference derivatives for base
parameters. If such a value is supplied in a derivatives file PEST will give an “out of
range” error message. (I am presently minded to build an external “derivatives
manager” which allows derivatives calculation to take place outside of PEST; then
finite difference and model-calculated derivatives could co-exist for base parameters.
This would facilitate operation of PEST with composite models, some of which can
supply their own derivatives while some cannot. Derivatives calculation for the latter
could then be parallelized for greater computational efficiency.)

Alterations and Upgrades to PEST 35

3. When undertaking SVD-assisted parameter estimation with external derivatives, it is
still necessary for a set of original base parameter derivatives to exist in a JCO file
prior to the commencement of PEST execution – just as in normal SVDA operation.
These derivatives are used for initial definition of super parameters, initial
computation of super parameter derivatives, and for the setting of internal parameter
scaling variables. While this is a little cumbersome it constitutes minimal departure
from normal PEST operation; greater departures would require more profound
programming changes to PEST than those which have already taken place.

2.26.2 Alterations to SVDAPREP

If the JACFILE control variable is set to 1 in a base parameter PEST control file whose name
is supplied to SVDAPREP, SVDAPREP will write a PEST control file for SVD-assisted
parameter estimation in which external derivatives computation is also activated. Note the
following facets of SVDAPREP operation under these conditions.

1. If JACFILE is set to 1 in a base parameter PEST control file, then a “derivatives
command line” section must be present within the same PEST control file.

2. Both the model command (in the “model command line” section of the base PEST
control file) and the derivatives command (in the “derivatives command line” section
of the base PEST control file) must be the names of batch (on a PC) or script (on a
UNIX platform) files. In the former case they must possess the extension “.bat”.

3. In normal SVDAPREP operation the model batch file is supplemented with
SVDAPREP-generated commands to run PARCALC and (if there is prior information
present in the base PEST control file) PICALC. Commands are also added to delete
PARCALC-generated model input files. In doing this, SVDAPREP writes a new
model batch file named svdabatch.bat. The contents of the derivatives batch file are
supplemented in a similar manner; the new derivatives batch file is named
svdabatch_d.bat.

4. Irrespective of whether or not a “derivatives command line” section is present in the
base PEST control file, if JACFILE is set to zero in this file, the DERCOM variable
for all super parameters is set to 1 in the SVDAPREP-generated super parameter
PEST control file, thereby instructing PEST to compute derivatives for all super
parameters using finite differences. Alternatively, if JACFILE is set to 1 in the base
parameter PEST control file, SVDAPREP supplies a DERCOM value of zero to all
super parameters, thus requiring that the model supply derivatives for all of them. In
fact, as discussed above, the model provides base parameter derivatives and PEST
computes super parameter derivatives from these.

5. As noted above, if base parameter derivatives are computed externally, PEST re-
defines super parameters during every optimisation iteration, and computes super
parameter derivatives from base parameter derivatives. Thus PEST effectively sets the
SVDA_SUPDERCALC control variable to 1 internally, whether or not it is set to this
value in the base parameter PEST control file. SVDAPREP does not therefore ask the
user whether super parameter derivatives are to be calculated automatically for the

Alterations and Upgrades to PEST 36

first PEST optimisation iteration if JACFILE is set to 1 in the PEST control file to
which it is directed, for this question is irrelevant under these conditions.

There is a nuance of SVDAPREP operation of which the user should be aware. If JACFILE
is set to 1, then prior information cannot be added to a base parameter PEST control file after
the JCO file has been written and before SVDAPREP is run. (This is a relatively unusual
situation.) If JACFILE is set to 1, PEST requires that prior information derivatives actually
be stored in the JCO file. The same applies if SVDA_SUPDERCALC is set to 1. However
where super parameter derivatives are computed using finite differences, this is not required.

2.27 Broyden’s Jacobian Matrix Update

2.27.1 General

I’d like to thank Brian Skahill from USACE, Vicksburg and Jeff Baggett from University of
Wisconsin, La Crosse for bringing this methodology to my notice. At the time of writing,
limited testing has shown that this technique can increase PEST efficiency a great deal in all
of its modes (i.e. estimation, predictive analysis and regularisation modes). Therefore, it is
recommended that it be implemented as a matter of course. The method is briefly described
below. See also:-

Madsen, K. and H.B. Nielsen, 2004. Methods for Non-Linear Least Squares. Informatics and
Mathematical Modelling. Technical University of Denmark.

Skahill, B.E., and Baggett, J.S. (2006). More Efficient Derivative-based Watershed Model
Calibration, Eos Trans. AGU, 87(52), Fall Meet. Suppl., Abstract 1521.

2.27.2 Description

During every iteration of the parameter estimation process, PEST computes derivatives of
model outputs with respect to all adjustable parameters. It then computes upgrades for
parameter values, and tests the efficacy of these upgrades by running the model using these
trial parameters. If the objective function is lowered the upgrade is provisionally accepted.
Further upgrade attempts are usually made, normally on the basis of extra values of the
Marquardt lambda.

If a model is linear, PEST should be able to reduce the objective function to zero in just one
upgrade attempt of one iteration. But rarely is this the case, because derivatives that are
computed at one location in parameter space are not quite applicable to other locations in
parameter space. Thus after a suitable parameter upgrade vector has been selected at one
location in parameter space (this resulting in a lowered objective function), derivatives are re-
computed at the upgraded location, and another optimisation iteration is undertaken.

On any occasion that a parameter upgrade is attempted, there is an opportunity to improve the
current set of parameter derivatives encapsulated in the Jacobian matrix, simply on the basis
of the information that has been obtained from that upgrade attempt. The upgrade vector
defines a secant in parameter space, the slope of which can be employed to improve the
components of parameter derivatives projected onto that direction. After undergoing revision

Alterations and Upgrades to PEST 37

on the basis of this new information, the updated Jacobian matrix can be employed for
computation of subsequent upgrade vectors, thereby hopefully making these subsequent
parameter upgrade attempts (computed on the basis of different Marquardt lambdas) more
effective. When upgrade attempts have been exhausted, another optimisation iteration is
commenced and all parameter derivatives are re-computed on the basis of the upgraded
parameter set as a new optimisation iteration is commenced.

Let J be the current Jacobian matrix computed on the basis of the current parameter set p.
Suppose that a trial set of parameters pnew has just been computed on the basis of this
Jacobian matrix in conjunction with a particular Marquardt lambda. Define the upgrade
vector u as:

 u = pnew – p

Let the vectors onew and o represent model outputs (corresponding to field observations)
computed on the basis of pnew and p respectively. Implementation of Broyden’s rank one
update process results in the production of a new Jacobian matrix Jnew, calculated as follows:-

 Jnew = J + wut

where

 ()Juoo
uu

w −−= newt

1

Jnew is then employed in computation of further parameter upgrade attempts made during the
current optimisation iteration using the theory presented in chapter 2 of the PEST manual.

2.27.3 Implementation of Broyden’s Update

The arrangement of variables employed in the “control data” section of the PEST control file
is shown below (with optional variables placed in square brackets). A new variable named
JACUPDATE (shown in bold below) controls the operation of the Broyden Jacobian update
procedure in PEST.

* control data
RSTFLE PESTMODE
NPAR NOBS NPARGP NPRIOR NOBSGP [MAXCOMPDIM]
NTPLFLE NINSFLE PRECIS DPOINT NUMCOM JACFILE MESSFILE
RLAMBDA1 RLAMFAC PHIRATSUF PHIREDLAM NUMLAM [JACUPDATE]
RELPARMAX FACPARMAX FACORIG [IBOUNDSTICK UPVECBEND]
PHIREDSWH [NOPTSWITCH] [DOAUI]
NOPTMAX PHIREDSTP NPHISTP NPHINORED RELPARSTP NRELPAR
ICOV ICOR IEIG

Variables in the “control data” section of the PEST control file.

If JACUPDATE is omitted or set to zero, Broyden updating will not occur. If it is set to n
where n is a positive integer, it will occur immediately following the first n parameter
upgrade attempts made during every optimisation iteration on the basis of different
Marquardt lambdas. If it is not set to zero, it is suggested that JACUPDATE be set to 999 so

Alterations and Upgrades to PEST 38

that the Jacobian matrix is updated after every parameter upgrade attempt.

Limited experience to date has shown that Broyden Jacobian updating works well in most
parameter estimation contexts, including all modes of PEST behaviour, and whether or not
devices such as “automatic user intervention” are being employed in difficult parameter
estimation contexts. However its performance does not appear to be as beneficial where
singular value decomposition or LSQR is employed as a solution device. On the other hand,
it appears to work well with the SVD-assist solution methodology. Feedback on this would
be welcome.

2.28 Parameter Sensitivity Re-Use

2.28.1 General

If a model takes a long time to run, any opportunities to dispense with unnecessary model
runs should be taken. PEST’s sensitivity re-use functionality provides such an opportunity.

If, during one particular iteration of the (regularized) parameter estimation or predictive
analysis process undertaken by PEST, PEST detects that the composite sensitivities of certain
parameters are low, then it can be instructed not to waste a model run (or perhaps two model
runs if central derivatives computation is employed) in computing sensitivities with respect to
that parameter on the next occasion that the Jacobian matrix must be filled. This can occur if
PEST’s sensitivity re-use functionality is activated. However, no matter what the sensitivity
distribution of parameters, sensitivities for all parameters will be re-computed every N
optimisation iterations, where N is set by the user. (Note that Broyden updating, if activated,
will still incur parameter sensitivity improvements for all parameters every iteration,
regardless of the sensitivity re-use setting.)

2.28.2 Activating Sensitivity Re-Use

Sensitivity re-use is activated by setting the DOSENREUSE variable on the eighth line of the
PEST control file to “senreuse”. If this is set to “nosenreuse”, or simply omitted, then
sensitivity re-use will not be activated.

The location of the DOSENREUSE variable within the “control data” section of a PEST
control file is shown below.

* control data
RSTFLE PESTMODE
NPAR NOBS NPARGP NPRIOR NOBSGP [MAXCOMPDIM]
NTPLFLE NINSFLE PRECIS DPOINT NUMCOM JACFILE MESSFILE
RLAMBDA1 RLAMFAC PHIRATSUF PHIREDLAM NUMLAM [JACUPDATE]
RELPARMAX FACPARMAX FACORIG [IBOUNDSTICK UPVECBEND]
PHIREDSWH [NOPTSWITCH] [DOAUI] [DOSENREUSE]
NOPTMAX PHIREDSTP NPHISTP NPHINORED RELPARSTP NRELPAR
ICOV ICOR IEIG

Variables in the “control data” section of the PEST control file.

The following should be noted.

Alterations and Upgrades to PEST 39

1. Any or all of the NOPTSWITCH, DOAUI and DOSENREUSE variables can be
omitted from the eighth line of the PEST control file.

2. The DOAUI and DOSENREUSE variables can be placed in either order. However if
the NOPTSWITCH variable is present, it must precede them.

2.28.3 Sensitivity Re-Use Variables

A number of variables govern implementation of PEST’s sensitivity re-use functionality.
These can be supplied in a special “sensitivity reuse” section. Like the “automatic user
intervention” section of the PEST control file, this section can be omitted if desired. In that
case PEST employs default values for sensitivity re-use variables.

If present, the “sensitivity reuse” section must be placed just before the “parameter groups”
section. If a “singular value decomposition” section is present, the location of this section
with respect to the “sensitivity reuse” section does not matter; however each of these must
precede an “automatic user intervention” section if the latter is present in a PEST control file.
They must also precede an “SVD assist” section if this is present.

Irrespective of whether a “sensitivity reuse” section is present in the PEST control file,
sensitivity re-use functionality will not be activated unless DOSENREUSE in the “control
data” section of the PEST control file is present, and set to “senreuse”.

The arrangement of variables within the “sensitivity reuse” section of a PEST control file is
shown below. Following that is an example of such a section showing default values for the
variables governing its operation.

* sensitivity reuse
SENRELTHRESH SENMAXREUSE
SENALLCALCINT SENPREDWEIGHT SENPIEXCLUDE

Arrangement of variables within the “sensitivity reuse” section of a PEST control file.

* sensitivity reuse
0.15 -1
3 -1.0 yes

An example of a “sensitivity reuse” section, showing default values for sensitivity re-use
variables.

The roles of each of these variables is now discussed in detail.

SENRELTHRESH

This denotes the threshold of parameter composite sensitivity (relative to the maximum
composite sensitivity of any parameter) at which sensitivity reuse is activated for any
parameter. That is, if the composite sensitivity of any parameter, relative to that of highest
composite sensitivity, is equal to or less than this threshold, then that parameter is a candidate
for sensitivity re-use on some PEST iterations.

Alterations and Upgrades to PEST 40

SENRELTHRESH can be set to any non-negative value. However there is no use in setting
its value above 1.0; if it is set to 1.0 or above, then the number of parameters for which
sensitivity re-use is active on any iteration is set entirely by the SENMAXREUSE variable,
as the relative composite sensitivity of all parameters is, by definition, less than the threshold.

SENMAXREUSE

This is the maximum number of parameters for which sensitivity re-use is activated on any
one PEST iteration. If it is set to a negative number, then PEST automatically sets it to half
the number of adjustable parameters. It should not be set to a value greater than the number
of adjustable parameters minus 1. If it is set to zero, PEST will terminate execution with an
error message.

If more parameters than SENMAXREUSE incur candidature for sensitivity reuse through
possession of composite sensitivities less than or equal to the RELSENREUSE threshold,
then parameters are eliminated from candidature in order of composite sensitivity, from
highest to lowest, such that the total number of parameters for which sensitivities are re-used
is equal to SENMAXREUSE.

SENALLCALCINT

SENALLCALCINT denotes the optimisation interval at which all parameter sensitivities will
be re-calculated, regardless of their relative composite sensitivities. If, for example, this is set
to 3, then all parameter sensitivities will be computed on iterations 1, 4, 7, 10 etc.

SENPREDWEIGHT

As is described in the PEST manual, the composite sensitivity of a parameter is obtained by
summing elements of the column of the Jacobian matrix pertaining to that parameter, with
each element in a column multiplied by the square of the observation weight pertaining to
that column. If PEST is being employed in predictive analysis mode, the question then arises
as to what weight the predictive sensitivity element in each column should be given.
Presumably, the weight should be high enough for it to be visible in the composite sensitivity
of any parameter, for getting sensitivities of the prediction right may be critical to raising or
lowering that prediction as required by the predictive analysis process. Hence parameters that
are critical to that prediction may not be good candidates for sensitivity reuse, for their
sensitivities should be re-calculated during every optimisation iteration instead.

SENPREDWEIGHT is the weight to assign to the prediction in computation of composite
parameter sensitivities when PEST is run in predictive analysis mode. If it is set to a negative
number, PEST will compute its weight as equal to the maximum weight assigned to any other
observation (including prior information if SENPIEXCLUDE is set to “no”).

SENPIEXCLUDE

If a PEST control file cites prior information, then a SENPIEXCLUDE setting of “yes” will
instruct PEST not to take any account of this prior information when determining composite
parameter sensitivities for the purpose of deciding parameter candidates for inclusion in the

Alterations and Upgrades to PEST 41

sensitivity re-use process.

It should be noted. that, irrespective of any sensitivity reuse settings, regularisation
observations and/or prior information equations are never included in the calculation of
composite parameter sensitivities for the purpose of deciding candidature or otherwise for
parameter sensitivity re-use.

2.29 Regularisation Convergence Adjustment
Under normal circumstances, when working in regularisation mode, PEST ceases execution
immediately if the measurement objective function falls below its user-supplied target value
of PHIMLIM. Therefore it does not undertake further iterations in an attempt to lower the
regularisation objective function any further in order to maximize the extent to which
parameters adhere to the preferred condition that is encapsulated in regularisation constraints.

There are some circumstances, however, where minimization of the regularisation objective
function is just as important as allowing the measurement objective function to reach
PHIMLIM. In these circumstances, PEST should continue with the parameter estimation
process until some other convergence criterion is met (for example that parameters cease to
change noticeably between iterations, or that neither the regularisation nor measurement
objective function changes noticeably between iterations). This can be achieved through
setting the REGCONTINUE variable to “continue”.
* regularisation
PHIMLIM PHIMACCEPT [FRACPHIM] [MEMSAVE] [CONJGRAD] [CGRTOL] [CGITNLIM]
WFINIT WFMIN WFMAX [LINREG] [REGCONTINUE]
WFFAC WFTOL [IREGADJ]

Variables in the “regularisation” section of a PEST control file.

The above figure shows the locations of all control variables occupying the “regularisation”
section of the PEST control file; optional variables are depicted in square brackets. The
REGCONTINUE variable (shown in bold) is placed on the third data line of this section. Its
location is interchangeable with that of the LINREG variable. In fact, if the LINREG variable
is omitted from the regularisation section of a PEST control file (as it normally is),
REGCONTINUE can be placed immediately following the value of the (mandatory)
WFMAX variable.

If present, REGCONTINUE must be supplied as either “continue” or “nocontinue”. If absent,
it is assumed to be “nocontinue”; in this case PEST ceases execution as soon as the
measurement objective function falls below PHIMLIM. If it is set to “continue” however,
PEST will continue iterating, trying to improve the regularisation objective function, until
some other convergence criterion is met.

2.30 New Termination Criteria
Two new (and optional) termination control variables named PHISTOPTHRESH and
PHIABANDON have been added to the “control data” section of the PEST control file.
These are located on line 9 of the PEST control file, along with other termination variables.
These, and another new variable named LASTRUN, are shown highlighted in the figure

Alterations and Upgrades to PEST 42

below.

* control data
RSTFLE PESTMODE
NPAR NOBS NPARGP NPRIOR NOBSGP [MAXCOMPDIM]
NTPLFLE NINSFLE PRECIS DPOINT NUMCOM JACFILE MESSFILE
RLAMBDA1 RLAMFAC PHIRATSUF PHIREDLAM NUMLAM [JACUPDATE]
RELPARMAX FACPARMAX FACORIG [IBOUNDSTICK UPVECBEND]
PHIREDSWH [NOPTSWITCH] [DOAUI]
NOPTMAX PHIREDSTP NPHISTP NPHINORED RELPARSTP NRELPAR [PHISTOPTHRESH] [LASTRUN] [PHIABANDON]
ICOV ICOR IEIG

Variables in the “control data” section of the PEST control file.

If PHISTOPTHRESH is set to a positive number, PEST will cease execution if the objective
function falls below this value at the end of any optimisation iteration. (This criterion is
applied to the measurement objective function if PEST is run in “regularisation” mode.) If it
is set to zero or a negative number it is ignored. Note that an error condition will occur if
PHISTOPTHRESH is set to a positive number while PEST is asked to run in “predictive
analysis” mode.

Another new (integer) control variable can follow PHISTOPTHRESH on the 9th line of the
PEST control file; this is the LASTRUN variable. If LASTRUN is set to zero, then PEST
will not undertake a final model run on the basis of optimised parameters upon termination of
execution. If it is not set to zero it must be set to one (its default value).

PHIABANDON optionally follows LASTRUN. If, at the end of the first model run, and any
optimisation iteration thereafter, the objective function (or measurement objective function if
PEST is run in “regularisation” mode) is above PHIABANDON, PEST will terminate
execution. Set this to a very high number, or to a non-positive number (or omit it altogether),
for it to have no effect.

PHISTOPTHRESH, PHIABANDON and LASTRUN can be useful in conjunction with null
space Monte Carlo analysis. Using PHISTOPTHRESH, the optimisation process can be made
to cease (without the carrying out of a final model run if LASTRUN is set to 0) if the
objective function is reduced to a level at which the user has deemed the model to be
calibrated; PEST can then move on to its next run. On the other hand if, on undertaking the
initial model run using a certain set of random parameters, the objective function is so high
that it is unlikely to be lowered efficiently to a state at which the model can be considered
calibrated, that PEST run can be immediately abandoned (using PHIABANDON) in the hope
that the next random parameter set offers more hope.

Note that if PEST abandons the parameter estimation process in response to the
PHIABANDON setting, it will not undertake a final model run on the basis of “optimised”
parameters, irrespective of the user-supplied LASTRUNS setting.

If desired, a user can supply PHIABANDON values on an iteration by iteration basis. Thus,
for example, a user may decide that if the objective function is lower than 10000 when
calculated using initial parameters, then it is worth proceeding with the parameter estimation
process. On the other hand if the objective function has not dropped to 2000 by the end of the
second iteration, then the parameter estimation process should be abandoned. In this case, a
filename can replace the value of the PHIABANDON variable on the 9th line of the PEST

Alterations and Upgrades to PEST 43

control file; PEST then reads iteration-specific PHIABANDON values from the cited
“PHIABANDON schedule file”, an example of which is shown below.
10000.0
10000.0
2000.0

An example PHIABANDON schedule file.

Entries in a PHIABANDON schedule file should be listed one to a line. Each represents the
PHIABANDON value pertaining to sequential iterations, starting with the zeroth iteration
(i.e. the initial model run). The third entry thus pertains to the second iteration. Thus, in the
above example, if the objective function is above 10000 at the end of the first model run or
the end of the first iteration, PEST will abandon the parameter estimation process.
Furthermore, if, at the end of the second iteration the objective function is above 2000, it will
also take the opportunity to abandon the process.

The following should be noted.

• If there are more entries in the PHIABANDON schedule file than the maximum
number of iterations assigned to the current parameter estimation process (i.e.
NOPTMAX), PHIABANDON will ignore lines after NOPTMAX+1.

• If there are less than NOPTMAX+1 lines in the PHIABANDON schedule file, PEST
will assign to missing iterations the last PHIABANDON value read from the file.

• A zero or negative PHIABANDON value (or a very large value for that matter) can
be used to signify that parameter estimation abandonment is not active during the
pertinent iteration.

2.31 PSLAVE Command-Line Option
If PSLAVE is started using the command:-
 pslave /n

it will not cease execution upon termination of PEST execution. This can be useful in
circumstances where many Parallel PEST runs must be undertaken in succession (for
example in calibration-constrained Monte Carlo analysis). The runs can then be undertaken
within a loop written to a batch or script file. Meanwhile, the slaves need only be started
once, before the batch or script file is activated.

2.32 New Jacobian Matrix Save Option
The last line of the “control data” section of the PEST control file holds three, maybe four,
variables, namely ICOV, ICOR, IEIG (and maybe the optional IRES variable). An additional
variable can now be placed on this line, this being named JCOSAVEITN. JCOSAVEITN is a
character variable which should be supplied as either of two character strings, these being
“jcosaveitn” or “nojcosaveitn”. If the former string is supplied, PEST will write a Jacobian
matrix file (i.e. a “JCO file”) at the end of each optimization iteration, this containing the
Jacobian matrix employed for that particular iteration. The name of each such file is

Alterations and Upgrades to PEST 44

case.jco.N where N is the iteration number to which the JCO file pertains. Alternatively, if
JCOSAVEITN is set to “nojcosaveitn” or omitted altogether, PEST will not save a
progression of JCO files in this manner.

The following should be noted:

1. The JCO file containing the Jacobian matix corresponding to the iteration at which
the best parameter set so far was computed, is saved to a file named case.jco in the
usual manner, irrespective of the setting of JCOSAVEITN.

2. The JCOSAVEITN variable can be placed anywhere on the 10th line of the PEST
control file. However it is recommended that it be placed after the values of ICOV,
ICOR, IEIG (and IRES if the latter is present).

JCOSAVEITN should be set to “jcosaveitn” if it is desired that the MULJCOSEN utility be
employed for monitoring of changes to composite parameter and/or observation sensitivities
as the parameter estimation process undertaken by PEST progresses.

2.33 Interim Residuals File Save Option
In addition to the JCOSAVEITN variable, the last line of the “control data” section of the
PEST control file can now contain another variable, this variable having a function which is
not too dissimilar from that of the JCOSAVEITN variable. The name of this variable is
REISAVEITN. This is a text variable which can be set to either “reisaveitn” or
“noreisaveitn” (or omitted altogether, which is equivalent to a setting of “reisaveitn”).

As is documented in the PEST manual, PEST writes an “REI file” (this being an “interim
residuals file”) at the end of every optimisation iteration. This records observations and
corresponding model outputs computed for the best parameters achieved in the optimisation
process up to that iteration. Regardless of the setting of REISAVEITN, this file is saved (and
the previous one overwritten) at the end of every iteration; its name is case.rei where case is
the filename base of the current PEST control file. However if REISAVEITN is set to
“reisaveitn”, then this same file is also saved as case.rei.N where N is the current iteration
number. Thus at the end of the parameter estimation process, a sequence of files remains in
the PEST working directory which collectively document the history of model-to-
measurement misfit for every observation within the PEST input dataset.

The JCOSAVEITN variable can be placed anywhere on the 10th line of the PEST control file.
However it is recommended that it be placed after the values of ICOV, ICOR, IEIG (and
IRES if the latter is present).

2.34 Group-Specific Target Measurement Objective Functions

2.34.1 General

When PEST is run in regularisation mode a value must be supplied for the PHIMLIM
variable in the “regularisation” section of the PEST control file. This is the target
measurement objective function. As described in the PEST manual, when running in

Alterations and Upgrades to PEST 45

regularisation mode the parameter estimation problem is re-formulated as a constrained
minimisation problem. In this problem PEST is asked to minimise the regularisation
objective function subject to the constraint that the measurement objective function rises no
higher than PHIMLIM. In practice PHIMLIM may not be attainable, in which case PEST
lowers the measurement objective function as far as it can. If it is obtainable, PEST ceases
execution as soon as the measurement objective function falls below PHIMLIM.
Alternatively, PEST can be asked to continue the inversion process until the regularisation
objective function is as small as it can be while the measurement objective function is
simultaneously made as close as possible to its target; this is effected through setting the
REGCONTINUE variable to “continue”.

In some instances it can be useful to set the target measurement objective function on an
observation group by observation group basis. When this is done, PEST is asked to monitor
the performance of the inversion process in lowering each group-based component of the
measurement objective function to its group-specific target. If one such target it not being
met, PEST raises the weights assigned to members of the pertinent observation group is that
the overall objective function penalty incurred through not meeting that target is greater, thus
providing PEST with more incentive to actually meet it. This, of course, provides no
guarantee that the target will be met. However it does place greater emphasis on the meeting
of as yet unmet targets than would otherwise be the case.

When weights are altered, so too does the current value of the measurement objective
function, as indeed do target measurement objective functions. However when undertaking
observation weights adjustment in the manner described above, PEST ensures that the overall
target measurement objective function (which is equal to the sum of group-specific target
measurement objective functions expressed in terms of original measurement weights as
supplied in the PEST control file) does not change. While reporting the revised current
measurement objective function to the screen and to its run record file at all stages of the
parameter estimation process, it also reports the measurement objective function, and group-
specific components thereof, as calculated from original weights, both during and after the
parameter estimation process. The metric by which success of the constrained optimization
process is judged is that these individual measurement objective function components
approach (or are less than) their group-specific measurement objective function targets
(which, as is stated above, are calculated on the basis of original weights as supplied in the
PEST control file). In the meantime, if the measurement objective function, as reported on all
attempts to upgrade parameters using different Marquardt lambdas, is lower than the initial
target (obtained through summation of individual group-specific targets) then so too will be
the measurement objective function calculated using initial weights.

The following should be noted.

1. Group-specific measurement objective function targets must be supplied for all non-
regularisation observation groups, or for none of them.

2. A group-specific measurement objective function target must not be supplied for a
regularisation group.

3. Group-specific measurement objective function targets can only be supplied if PEST
is run in “regularisation” mode.

Alterations and Upgrades to PEST 46

4. If group-specific measurement objective function targets are supplied, values for
PHIMLIM and PHIMACCEPT as supplied in the “regularisation” section of the
PEST control file are ignored. PHIMACCEPT is internally set to 1.05 times the total
measurement objective function target value.

5. If a value is supplied for FRACPHIM in the “regularisation” section of the PEST
control file, this is respected. Thus if FRACPHIM times the current objective function
is greater than the overall target measurement objective function, the former is
accepted as the temporary target for the current optimisation iteration.

6. Internal weights re-assignment by PEST will never be such that weights for any
observation group are increased by a factor of more than 128 or reduced by a factor of
128 from their original values. The increase/reduction factor per iteration is never
greater than 2.0.

7. Unless IREGCONTINUE is set to “continue” PEST will cease execution when the
total measurement objective function falls below the total target measurement
objective function; no account is taken of whether groups-specific measurement
objective functions are below their group-specific targets.

The use of group-specific measurement objective function targets cannot in themselves
guarantee that these targets are all simultaneously met. However they can certainly provide
some assistance to the optimization process in achieving this result. The user should try,
however, to minimize the need for measurement weights adjustment by choosing original
weights and group-specific targets in a manner that is considered optimal prior to
commencement of the optimisation process. For example, if it becomes apparent that a
group-specific measurement objective function is very easily met, then that target should be
reduced rather than being a source of unnecessary “target headroom” contributing to the
total measurement objective function target.

2.34.2 Implementation

Group-specific measurement objective function targets must be supplied in the “observation
groups” section of the PEST control file. Each such target must be placed immediately
following the name of a non-regularisation observation group. If a covariance matrix is
supplied for that group, the name of the pertinent covariance matrix file must follow the
value of the group-specific measurement objective function target. The following figure
shows an example.
* observation groups
obs_gp_1 45.00
obs_gp_2 67.00 covmat.dat
obs_gp_3 67.00
regul1
regul2
regul3

The “observation groups” section of a PEST control file, showing the use of group-
specific measurement objective function targets.

Alterations and Upgrades to PEST 47

2.35 Bad Derivatives Damage Mitigation - 1

2.35.1 General

Use of the Gauss-Marquardt-Levenberg method on which PEST is based is predicated on the
assumption that model outputs are differentiable (or at the very least continuous) with respect
to model parameters. However often, because of poor model performance, this is not the
case. Lack of differentiability can be incurred by at least the following (and many other)
aspects of model behaviour:-

1. lack of convergence of iterative solvers;

2. adaptive time stepping (particularly for models which simulate groundwater/surface
water interaction);

3. dry cells (if using the USGS MODFLOW groundwater model);

4. particles (if using the USGS MODPATH particle tracking model).

The JACTEST, POSTJACTEST and MULJCOSEN utilities can be used to explore the
existence (or otherwise) of this problem.

Bad derivatives express themselves in various ways during a PEST run. More often than not
however, a sudden refusal by PEST to lower the objective function any further (possibly
accompanied by a “bouncing around” of the objective function between different Marquardt
lambda) is a sign of its presence.

For many models, analysis using JACTEST reveals that contamination of derivatives by
numerical noise is not necessarily purely random. The first of the following two figures
illustrates a graph of one line of a JACTEST output table in which derivatives are
contaminated by purely random noise; the second part however shows the more common
situation, in which a plot of model outputs against incremented parameter value shows
segments in which derivatives do indeed have integrity. It is only in the vicinity of points (a)
and (b) in this figure that derivatives are not useable; elsewhere they are indeed fit for use in
the parameter estimation process. Furthermore, it is common experience that such aberrations
in slopes exist only between neighbouring pairs of points, and do not occur over parameter-
space distances comprised of two or more inter-point segments.

Alterations and Upgrades to PEST 48

Parameter value

M
od

el
 o

ut
pu

t

Parameter value

M
od

el
 o

ut
pu

t a

b

Plots of model output vs. parameter value from a JACTEST output file.

For situations described by the second of the above figures, aberrant derivatives behaviour
may be easily recognised where three-point derivatives computation is taking place. For a
particular parameter, three-point derivatives computation will occur from the beginning of
the parameter estimation process if FORCEN is set to “always_3” for the group to which the
parameter belongs. However more commonly PEST commences the parameter estimation
process with two-point derivatives for all parameters and switches to three-point derivatives
for all parameters only if the parameter estimation process is proceeding very slowly. This
behaviour occurs when FORCEN for all parameter groups is set to “switch”.

Where three-point derivatives computation is activated, PEST has the opportunity to compare
the slopes of two neighbouring segments on the curve of model output vs. parameter value. If
slopes of these neighbouring segments are markedly different, this indicates that points (a) or
(b) of the above graph may have been encountered. If this is the case, the derivative should
be computed on the basis of only one of the neighbouring segments defined on the basis of
the three parameter values, rather than on both of them. Alternatively, perhaps both segments
should be abandoned and the local slope of the model output vs. parameter value curve
approximated in a way that does not necessarily achieve progress of the parameter estimation
process, but does not harm it either.

Alterations and Upgrades to PEST 49

2.35.2 Implementation

“Spit slope analysis” is implemented according to new settings supplied in the “parameter
groups” section of the PEST control file. Variables that can appear on each line of this
section are illustrated in the following diagram.

* parameter groups

PARGPNME INCTYP DERINC DERINCLB FORCEN DERINCMUL DERMTHD [SPLITTHRESH SPLITRELDIFF SPLITACTION]

(one such line for each of NPARGP parameter groups)

Variables appearing in the “parameter groups” section of the PEST control file.

The SPLITTHRESH, SPLITRELDIFF and SPLITACTION variables are optional. However
if one of them is supplied for a particular parameter group then all of them must be supplied
for that group.

SPLITTHRESH must be zero or greater. If it is set to zero (or omitted), then split slope
analysis is not performed for that particular parameter group. If it is set to a positive value,
then split slope analysis for all observations for all parameters belonging to the group is
potentially undertaken. However it will only be actually undertaken for a particular
observation/parameter pair if the absolute value of the slope of at least one of the
neighbouring segments employed in three-point derivatives calculation for that
observation/parameter pair is greater than the value supplied for SPLITTHRESH. Thus the
analysis (and possible omission of individual slope segments) is not undertaken where
derivatives are very small.

SPLITRELDIFF defines another threshold. This variable must be provided with a value that
is greater than 0.0. If the absolute difference in slopes of neighbouring segments, divided by
the smaller of these two slopes, is greater than this threshold, then segment rejection is
activated.

The SPLITACTION variable defines the manner in which segment rejection is undertaken.
This is a text variable which must be set to either “smaller”, “zero” or “previous”. If it is set
to “smaller”, then the slope segment with higher absolute slope value is rejected, and the
derivative is taken as the slope of the segment of lesser absolute slope. If it is set to “zero”
then the derivative of the current observation with respect to the current parameter is
assigned a value of zero for the current iteration. If it is set to “previous”, then the derivative
obtained in the previous iteration is retained for the present iteration as well.

The following should be noted.

1. If, for a particular parameter group, SPLITACTION is set to “previous”, and three-
point derivatives computation is being undertaken on the first iteration of the
parameter estimation process, the “previous” derivative of the pertinent observation
with respect to the pertinent parameter is taken as zero.

2. The same thing happens if PEST is restarted mid-run, for on a restart PEST does not
read its previous Jacobian matrix.

Alterations and Upgrades to PEST 50

A further variable has been introduced to the “control data” section of the PEST control file
which can affect the way in which split slope analysis is implemented. This is an optional
variable. If present, it must immediately follow the NOPTSWITCH variable on the eighth
line of the PEST control file. If present, the NOPTSWHICH variable must also be present. If
the DOAUI and/or DOSENREUSE variables are present, they must follow SPLITSWH. This
is illustrated in the control data specification list below.
pcf
* control data
RSTFLE PESTMODE
NPAR NOBS NPARGP NPRIOR NOBSGP [MAXCOMPDIM]
NTPLFLE NINSFLE PRECIS DPOINT [NUMCOM] [JACFILE] [MESSFILE]
RLAMBDA1 RLAMFAC PHIRATSUF PHIREDLAM NUMLAM [JACUPDATE]
RELPARMAX FACPARMAX FACORIG [IBOUNDSTICK UPVECBEND]
PHIREDSWH [NOPTSWITCH] [SPLITSWH] [DOAUI] [DOSENREUSE]
NOPTMAX PHIREDSTP NPHISTP NPHINORED RELPARSTP NRELPAR [PHISTOPTHRESH] [LASTRUN] [PHIABANDON]
ICOV ICOR IEIG [IRES] [JCOSAVEITN] [REISAVEITN]

Specifications for “control data” section of PEST control file.

If SPLITSWH is provided with a zero or negative value, it is ignored. If not, it can be used to
determine the point within a PEST run at which operation of split slope analysis begins.
Suppose that this is set to 1.10. Then split slope analysis will begin when the following
conditions have been met.

1. Central derivatives are computed for at least one parameter group. (This can be
delayed by setting FORCEN for respective parameter groups to “switch”).

2. If switching in this manner occurs, at least one iteration has elapsed since this switch
has taken place. (This gives central derivatives without split slope analysis a chance
to lower the objective function.)

3. The ratio of the best objective function achieved during a certain iteration to that
achieved in the previous iteration is 1.10.

Note that SPLITSWH can be set to less than 1.0 if desired. For example, if it is set to 0.95,
then the use of split slope analysis is triggered when the new-to-old objective function ratio is
0.95 or above.

At the time of writing, use of split slope analysis appears to be moderately successful in
allowing the parameter estimation process to progress, even where derivatives are of poor
quality. Suitable settings for SPLITTHRESH, SPLITRELDIFF and SPLITACTION are still
being acquired from experience. The JACWRIT utility can be employed to learn of the
expected values of model output derivatives with respect to various parameters to help in the
setting of these variables. Values of 1.0E-4, 0.5 and “smaller” appear to work well. However
the author would welcome suggestions from user experience.

2.36 Bad Derivatives Damage Mitigation - 2

2.36.1 General

Corrupted derivatives are often recognised by the fact that their values are unusually high.
However it is very difficult to know how high these values must be to qualify as being such.
Another feature of corrupted derivatives is that if variation of one particular parameter causes

Alterations and Upgrades to PEST 51

a certain aspect of model functionality to cross an internal threshold that causes a
discontinuity to arise in the relationship between that parameter and model outputs, then an
entire column of the Jacobian will thus be corrupted because all model outputs will be
affected. It follows that if this column is removed from the parameter estimation process for
the current iteration, progress in lowering the objective function can still be made as the
presence of this corrupted column will then not impede the ability of other parameters to alter
their values in ways that lower the objective function.

One possible manner in which mitigation of bad derivatives may then proceed during any
particular iteration of the parameter estimation process is as follows:-

1. Attempt a parameter upgrade.

2. If the objective function does not improve, identify the parameter with maximum
composite sensitivity and remove that parameter from the upgrade calculation
process.

3. Attempt another parameter upgrade.

4. Repeat steps 2 and 3 until either the objective function is lowered, or until it becomes
obvious that it will not be lowered through a continuation of this process.

5. During the next optimisation iteration (when a fresh Jacobian matrix is available)
repeat this process.

This sequence of steps is very similar to that employed by PEST’s “automatic user
intervention” functionality and, in fact, can be implemented with very few alterations to that
algorithm. The major difference is that instead of temporarily removing parameters from the
parameter upgrade process in order of increasing composite sensitivity (starting from that of
lowest composite sensitivity), parameters are removed in order of decreasing composite
sensitivity, starting from that of highest composite sensitivity. (Hence it is important that
PEST be presented with a well-posed inverse problem for which traditional automatic user
intervention is not required.)

2.36.1 Implementation

The above process is most easily implemented simply by setting the DOAUI variable in the
“control data” section of the PEST control file to “auid”. However this is not allowed if the
SVD or LSQR solution schemes are invoked, because present PEST functionality is such that
automatic user intervention is disallowed under these circumstances. Note, however, that
automatic user intervention can presently be used successfully if PEST is undertaking SVD-
assisted parameter estimation.

If no “automatic user intervention” setting is present in the PEST control file, control
variables that affect the operation of the automatic user intervention process when used in
this manner for mitigation of problems caused by bad derivatives are assigned the values
shown in the following table.

Alterations and Upgrades to PEST 52

Variable name Default Value

MAXAUI 3*NESPAR/4

AUISTARTOPT 1

NOAUIPHIRAT 0.9

AUIRESTITN 0

AUISENSRAT 1

AUIHOLDMAXCHG 0

AUINUMFREE 1

AUIPHIRATSUF 0.8

AUIPHIRATACCEPT 0.99

NAUINOACCEPT 3*MAXAUI/4

Default values used for automatic user intervention control variables when the DOAUI
variable is set to “auid”. NESPAR in the above table is the number of adjustable
parameters.

Note that the AUIPHIRATSUF variable takes on a slightly different role when DOAUI is set
to “auid” from that which it assumes when DOAUI is set to “aui”. In the latter case it refers
to the ratio of the current objective function to that achieved on the current iteration with no
parameters temporarily frozen; in the former case it is the ratio of the current objective
function to the that prevailing at the commencement of the current iteration.

Both normal and parallel PEST can employ automatic user intervention. In the latter case the
efficiency of the process is greatly increased if the PARLAM variable in the PEST run
management file is set to a value that allows parallelisation of the Marquardt lambda search.

If you feel that PEST is trying to do too much automatic user intervention during any
particular optimisation iteration, the easiest way to reduce the time spent on progressively
freezing parameters and re-attempting upgrade calculations is to place an “automatic user
intervention” section in the PEST control file, assigning the above default values to all
variables contained therein except for MAXAUI which can be set to an appropriately low
number. PEST will then limit its progressive removal of Jacobian matrix columns to
MAXAUI before abandoning automatic user intervention for that optimisation iteration and
moving on to the next iteration.

2.37 Kullback-Leibler (K-L) Information Loss Statistics
PEST now computes AIC, AICc, BIC and KIC statistics. These are recorded on its run record
file, just before the parameter covariance matrix. Formulae used by PEST are as follows.
(These are the same as those employed by Poeter and Hill, 2007).

Alterations and Upgrades to PEST 53

() kn 2lnAIC 2 += σ

() ()








−−
+

++=
1
122lnAICc 2

kn
kkkn σ

() ()nkn lnlnBIC 2 += σ

()() () () () QXX tkkn ln2ln1ln1KIC 2 +−−−−= πσ

where:

 n is the number of non-zero-weighted observations and prior information
equations employed in the parameter estimation process;

k is equal to m+1 where m is the number of adjustable parameters involved in
the parameter estimation process;

σ2 is the residual variance, calculated as Фmin/n, where Фmin
 is the minimized

objective function;

X is the Jacobian matrix computed on the basis of optimised (or almost
optimised) parameters;

Q is the weight matrix employed by PEST.

The following should be noted.

1. The above statistics are calculated only if PEST is run in “estimation” mode; they are
not calculated if PEST is run in “predictive analysis” or “regularisation” modes. Nor
are they computed if solution of the inverse problem is achieved using truncated
singular value decomposition or LSQR.

2. If a problem is so ill-determined that the covariance matrix cannot be calculated (by
virtue of the fact that XtQX cannot be inverted), then these statistics will not be
calculated either.

The author must confess that in contexts where highly parameterised inversion and
concomitant uncertainty analysis can be carried out using efficient, state-of-the-art
regularisation methodologies described herein, he can see little use for these statistics, for
they ignore the fact that the world is a complex place and that “maximum likelihood” cannot
be computed without recognition of this complexity (as encapsulated in the C(p) matrix used
elsewhere in this document). Statistics such as those computed by the PREDVAR1 utility
described herein recognise this complexity; they also recognise the fact that regularisation of
one kind or another is required for unique solution of an inverse problem and that the “cost of
uniqueness” is a significant loss of resolution in representing hydraulic properties in a
calibrated model. The PREDVAR methodology thus provides a more coherent approach to
estimation of the optimum number of parameters to employ in solving an inverse problem, as
loss of system detail incurred by using too few parameters is played against amplification of

Alterations and Upgrades to PEST 54

observation noise incurred by using too many. Furthermore, methodologies such as Null
Space Monte Carlo allow a modeller to avoid having to commit him/herself to a unique set of
parameters at all, and to analyse the uncertainty of model predictions with full account taken
of the fact that the calibration process can normally capture very little of the true complexity
of real-world systems. The need for “model averaging” techniques, especially in contexts
where the very existence of discrete models whose relative worth must be analysed is an
artificial outcome of an inability on the part of older-style parameter estimation software to
accommodate complex but continuous parameter fields, is highly questionable in these
circumstances.

Alterations and Upgrades to PEST Utilities 55

3. Alterations and Additions to PEST Utilities
3.1 JCO2JCO
JCO2JCO has been upgraded so that the SCALE variable for some parameters can be altered
between the original PEST control file for which a Jacobian matrix file (JCO file) already
exists, and that for which it must be calculated. This can be very useful prior to undertaking
SVD-assisted PEST runs where it is desired to reduce the sensitivity of non-log-transformed
parameters such as recharge by decreasing its SCALE (and increasing its initial value by the
same ratio) so that all parameter types have approximately the same composite sensitivity
before commencing the inversion process.

JCO2JCO will allow a parameter to have a different scale on the second PEST control file
from that which is cited on the first PEST control file provided the following conditions are
met.

1. The parameter is not log-transformed in either file.

2. The parameter is not a tied parameter in either file.

3. The parameter has no parameters tied to it in either file.

JCO2JCO will not issue a warning message if a parameter’s initial value is different between
these two PEST control files as long as the product of the parameter’s initial value and its
SCALE is the same in both files.

The above restrictions may be such as to disallow certain complex alterations to parameter
status between PEST control files. For example, a parameter cannot be given a different
SCALE, and be assigned a different transformation or tied status between PEST control files,
or JCO2JCO will object. If more complex changes in parameter SCALE and transformation
status than those allowed on a single JCO2JCO run are required, this is not a problem, for
JCO2CO can simply be run twice (or more) on the basis of more incremental changes
between successively-altered PEST control files. Thus alteration of a parameter’s SCALE
and tied/fixed/transformation status becomes a two-step process rather than a single-step
process.

3.2 PCLC2MAT
PCLC2MAT was written to help interpret data forthcoming from an SVD-assisted parameter
estimation process.

Recall from the PEST manual that when PEST undertakes SVD-assisted parameter
estimation, it estimates the values for a set of “super parameters”, normally named par1 to
parn. However the model still “sees” a set of “base parameters”; these are the parameters
whose values are actually written to model input files. However they are not written by PEST
to these files; they are actually written by a utility program named PARCALC that calculates
base parameter values from super parameter values as used by PEST.

Alterations and Upgrades to PEST Utilities 56

Before each model run, PEST writes a PARCALC input file named parcalc.in. This file
contains current values for super parameters, as well as the current “definition” of super
parameters in terms of base parameters. This “definition” consists of the first NSUP
normalised eigenvectors of (XtQX) or a similar matrix, where X contains sensitivities with
respect to base parameters. Each component of a particular eigenvector is actually the
contribution that the respective base parameter makes to the total super parameter. The
ordering of parameters in an eigenvector is the same as the ordering of parameters provided
to the base PEST control file upon which the SVD-assisted parameter estimation process was
based. These base parameter names are also listed in parcalc.in.

PCLC2MAT is run using the command:-

 pclc2mat parcalcfile ipar matoutfile

 where

parcalcfile is a PARCALC input file (normally parcalc.in),

ipar is a super parameter number, and

matoutfile will contain the components of the ipar’th super parameter recorded as a
single column matrix.

As is apparent from the above command-line syntax, the user-nominated column of the
eigenvector matrix is written to a “matrix file”; the format of this file is described in a later
section of this document. In the present case the second part of this file will list the names of
base parameters (as matrix row names). The first section will provide the contribution made
by each of these base parameters to the nominated super parameter; the squares of these
contributions should sum to 1.

Alternatively, if ipar is supplied as a negative number in the PCLC2MAT command line, all
of the first ipar super parameters are recorded in the matrix file written by PCLC2MAT.

As pointed out in the PEST manual, the base parameter composition of super parameters may
alter during the SVD-assisted parameter estimation process. Such alterations occur if one or
more base parameters hit their bounds. Such parameters are “frozen” at their bounds for the
remainder of the parameter estimation process and are therefore not included in the definition
of any super parameters. Singular value decomposition of XtQX is then repeated on the basis
of the reduced number of adjustable base parameters, and super parameters redefined
accordingly. Hence the super parameter definition recorded by PCLC2MAT will be pertinent
only to that stage of the SVD-assisted parameter estimation process at which the identified
parcalc.in was recorded. If it is at the end of the parameter estimation process, then it will
correspond to the final definition of super parameters employed by PEST. However if no
base parameters have hit their bounds during this process, then the super parameter definition
contained in parcalc.in will pertain to all base parameters.

Alterations and Upgrades to PEST Utilities 57

3.3 JCOPCAT
JCOPCAT concatenates two Jacobian matrices contained in two different unformatted “JCO”
files written by PEST. Concatenation is carried out with respect to parameter values rather
than observations; that is the matrices are concatenated “sideways” (assuming that each
column pertain to a separate parameter and each row pertains to a separate observation) so
that extra parameter columns are added to the file.

JCOPCAT can be very useful where it is desired that a single JCO file be built from the
outcomes of two subsequent PEST runs based on different adjustable parameters but
featuring the same observations, for example where extra base parameters are being brought
into play prior to an SVD-assisted PEST run. Use of JCOPCAT thus removes the need for re-
calculation of sensitivities with respect to old parameters where new parameters are added to
a base PEST control file. A new JCO file for the latter case can be built from that pertaining
to pre-existing parameters and that pertaining to new parameters by running PEST (with
NOPTMAX set to -1) based on only the new parameters and concatenating the old and new
JCO files using JCOPCAT to form a complete JCO file based on all base parameters.

Use of JCOPCAT is predicated on the following assumptions regarding the two existing JCO
files that are to be concatenated.

1. Both Jacobian matrices must contain the same number of rows.

2. Each row in each respective matrix must pertain to the same observation.

3. The same parameter cannot be featured in both JCO matrices.

Where these conditions are violated, JCO files can be prepared for concatenation using the
JCOORDER utility. This may occur, for example, if prior information is featured in one JCO
file but not in another. (JCO2JCO ignores such prior information when adapting the
JCOPCAT-produced JCO file to an existing base PEST control file; thus it can be removed
from one or both of the JCOPCAT input files before concatenation without any loss of
information.)

JCOPCAT is run using the command:-
 jcopcat jcofile1 jcofile2 jcofile3

where

 jcofile1 is an existing Jacobian matrix file,

 jcofile2 is another existing Jacobian matrix file, and

 jcofile3 is a new concatenated Jacobian matrix file.

JCOPCAT reads both the jcofile1 and jcofile2 JCO files, reporting any errors or
inconsistencies between the two to the screen. It writes the new, concatenated JCO file in
unformatted form, ready for use by programs such as JCO2JCO. Note that the contents of a
JCO file can be inspected in ASCII format using either of the JACWRIT or JCO2MAT
utilities.

Alterations and Upgrades to PEST Utilities 58

3.4 JCOORDER
JCOORDER reads an unformatted PEST-written “Jacobian matrix file” (i.e. “JCO file”). It
then writes another JCO file after performing one or more of the following tasks on the
PEST-generated Jacobian matrix contained in the first JCO file:-

1. removal of one or more rows of the Jacobian matrix (a row pertains to an
observation);

2. removal of one or more columns of the Jacobian matrix (a column pertains to a
parameter);

3. re-ordering of rows of the Jacobian matrix;

4. re-ordering of columns of the Jacobian matrix.

JCOORDER is run using the command:-
 jcoorder jcofile1 orderfile jcofile2

where

 jcofile1 is an existing Jacobian matrix file,

 orderfile is a parameter/observation ordering file or PEST control file, and

 jcofile2 is a new Jacobian matrix file written by JCOORDER.

An example of a “parameter/observation ordering file” is shown below:-
* parameters
ro2
ro3
h1
h2
* observations
ar3
ar4
ar5
ar6
ar7
ar8
ar9
ar11
ar12
ar13

Example of a “parameter/observation ordering file”.

A parameter/observation ordering file must begin with the header line “* parameters”.
Following that must be the names of one or more parameters, all of which must be cited in
the first JCO file. However these parameters can be cited in any order; the order in which
they are cited will be the order in which they will be represented in the final JCO file written
by JCOORDER. Following parameter names, observation names must be presented in similar
fashion.

Alterations and Upgrades to PEST Utilities 59

The following should be noted:-

1. A blank line can be inserted at any location within a parameter/observation ordering
file.

2. Any line beginning with the “#” character is ignored. Thus a comment can follow
such a character.

3. Parameters and/or observations cited in the first JCO file can be omitted from the
parameter/observation ordering file. These parameters/observations will then be
omitted from the JCO file written by JCOORDER.

As an alternative to reading a parameter/observation ordering file, JCOORDER can read a
PEST control file. It will recognise the fact that a PEST control file is supplied through the
extension “.pst” supplied with this file on the JCOORDER command line. Ordering of
parameters and observations will then be the same as that in the nominated PEST control file.
The following should be noted:-

1. Tied and fixed parameters in the PEST control file are ignored.

2. Prior information in the PEST control file is ignored (however if prior information is
detected in the PEST control file, JCOORDER asks the reader to confirm that it is
alright to ignore it).

3. Parameters/observations occurring in the JCO file can be absent from the PEST
control file. However extra parameters and/or observations must not be present in the
PEST control file.

Use of JCOORDER can be a necessary adjunct to the use of JCOPCAT in preparation for
SVD-assisted parameter estimation where PEST runs are undertaken for the purpose of
obtaining sensitivities for subsets of base parameters. The Jacobian matrices produced
through this process will need to be concatenated into one big base Jacobian matrix. However
it is quite possible that they will include different items of prior information; prior
information is ignored by JCO2JCO and SVDAPREP when preparing for an SVD-assisted
PEST run. Hence before parameter-concatenation of Jacobian sub-matrix JCO files using
JCOPCAT, it will be necessary to remove the rows of these files which pertain to prior
information, so that these matrices are compatible. Column re-ordering may also be
necessary.

The easiest way to build a parameter/observation ordering file is to first run JCO2MAT on
the Jacobian matrix requiring row/column removal and/or row/column re-ordering. Parameter
and observation names are listed as column and row names respectively in this file. A little
cutting and pasting with a text editor will soon result in a parameter/observation ordering file.
Alternatively, a parameter/observation ordering file can be easily built from a PEST control
file – perhaps the base PEST control file which the concatenated JCO file is being built to
complement prior to running SVDAPREP.

Alterations and Upgrades to PEST Utilities 60

3.5 JCOADDZ
JCOADDZ (the “Z” stands for “zero”) is in some respects similar to JCOORDER. It reads a
Jacobian matrix file and a file whose format is very similar to that of a parameter/observation
ordering file. It also writes a new Jacobian matrix file. However instead of a
parameter/observation ordering file, the file read by JCOADDZ is referred to as a
“parameter/observation addition file”; furthermore the option of reading a PEST control file
in place of this file is not available for JCOADDZ as it is for JCOORDER.

JCOADDZ is used for the purpose of adding additional rows (observations) and/or columns
(parameters) to an existing Jacobian matrix file. All additional rows and columns are zero
valued. The names of parameters pertaining to extra columns are read from the
parameter/observation addition file, as are the names of observations pertaining to added
rows.

JCOADDZ is run using the command:-
 jcoaddz jcofile1 addfile jcofile2

where

 jcofile1 is an existing Jacobian matrix file,

 addfile is a parameter/observation addition file, and

 jcofile2 is a new Jacobian matrix file written by JCOADDZ.

Note the following aspects of JCOADDZ’s operations.

1. It is not essential that both parameters and observations be added to an existing
Jacobian matrix file. Thus the parameter/observation addition file may cite no
observations or no parameters. However, irrespective of whether or not any
parameters or observations are cited in each section of this file, the “* parameters”
and “* observations” headers must still be present.

2. Blank and comment lines are allowed in parameter/observation addition file.

3. Extra parameters and observations are appended to the last column and row
respectively of the existing Jacobian matrix file. If it is desired that they occupy
different rows and/or columns, this can be accomplished through use of the
JCOORDER utility.

3.6 GENLIN

3.6.1 General

“GENLIN” stands for “GENeral LINear model”. The main purpose of GENLIN is to
complement PESTLIN functionality through which a nonlinear model can be replaced by its
linearised equivalent for purposes such as predictive uncertainty analysis. However it can
also be employed on a stand-alone basis without the use of PEST at all.

Alterations and Upgrades to PEST Utilities 61

GENLIN calculates its outputs according to the equation:-

y = y0 + M(p – p0)

where M is a matrix, and y, y0, p and p0 are vectors. For the sake of conformity with PEST
terminology (and in conformity with use of GENLIN as an adjunct to PESTLIN), the p
vector will normally contain parameter values while the y vector will contain the model-
generated equivalents to field measurements, or simply “observations” in PEST parlance. p0
and y0 are parameter and observation offsets.

The matrix M is a “sensitivity matrix”, or Jacobian matrix of a linearised model. It must have
as many rows as there are elements of p and as many columns as there are elements of y.
GENLIN allows parameters to be log-transformed. In that case rows of the M matrix
corresponding to log-transformed parameters must contain sensitivities with respect to the
logs of respective parameters. Under these circumstances, GENLIN outputs are calculated as:

y = y0 + M[log(p) – log(p0)]

where the log is taken to base 10.

3.6.2 GENLIN Input File

GENLIN requires an input file in which specifications for the linear model are supplied.. An
example of a GENLIN input file is shown below. Such a file is easily prepared with a text
editor.

Alterations and Upgrades to PEST Utilities 62

* dimensions
5 19
* parameters
ro1 log 4.0 2.0
ro2 log 4.0 2.0
ro3 log 4.0 2.0
h1 none 2.0 0.0
h2 none 2.0 0.0
* observations
ar1 2.0
ar2 2.0
ar3 2.0
ar4 2.0
ar5 2.0
ar6 2.0
ar7 2.0
ar8 2.0
ar9 2.0
ar10 2.0
ar11 2.0
ar12 2.0
ar13 7.0
ar14 7.0
ar15 7.0
ar16 7.0
ar17 7.0
ar18 7.0
ar19 7.0
* sensitivities
ves1.jco

Example of a GENLIN input file.

A GENLIN input file must contain four sections in the order shown above. Each section must
be named as shown, with the name preceded by the “*” character and a space. The contents
of each of these sections are now described.

Dimensions

The line following the “dimensions” section header must contain two integers, these being
the number of “parameters” and number of “observations” comprising the linear model. Once
GENLIN has read these dimensions it can allocate array storage for the data to follow.

Parameters

There must be as many lines in this section of the GENLIN input file as the number of
parameters specified in the “dimensions” section of the file. Each such line must contain 4
entries. The first is a parameter name (twelve characters or less in length), the second is its
transformation state (“log” or “none”), the third is its current value (p in the above
equations), while the fourth is its “offset value” (p0 in the above equations).

The following should be noted.

• In contrast to a PEST control file, parameters cannot be tied or fixed in a GENLIN
input file; they can only be log-transformed or untransformed.

• Actual parameter and offset values, and not their log-transformed counterparts, must

Alterations and Upgrades to PEST Utilities 63

be supplied irrespective of the transformation status of a parameter Where parameters
are designated as log-transformed, GENLIN takes care of logarithmic transformation
itself.

Observations

This section must contain as many lines as the number of observations specified in the
“dimensions” section of the GENLIN input file. Each such line must contain two entries. The
first is the observation name (twenty characters of less in length), while the second is the
observation offset value (y0 in the above equations).

Sensitivities

The “sensitivities” section of the GENLIN input file must contain just one line, this being the
name of a file containing the sensitivity of each linear model output with respect to each
parameter (i.e. the elements of the matrix M in the above equations). If the filename
extension is “.jco”, GENLIN assumes that this matrix is stored in a PEST binary Jacobian
matrix file (i.e. “JCO file”). If not, ASCII storage in matrix file format is assumed; the
format of this kind of file is discussed in following sections of this addendum. Note that the
JCO2MAT utility can be used to convert a JCO file to a matrix file.

It is important that the sensitivity file match the specifications for the linear problem as set
out in the GENLIN input file. That is, the number of rows in the sensitivity matrix must be
the same as the number of observations in the GENLIN input file. Similarly, the number of
columns in the sensitivity matrix must be the same as the number of parameters in the
GENLIN input file. Ideally, the names should match as well, though this is not essential – see
below. Whether or not this is the case, the ordering of parameters and observations must be
the same in both of these files.

It is also important to note that, as discussed above, if a parameter is cited as log transformed
in a GENLIN input file, the sensitivity of that parameter to all observations provided in the
sensitivity file must pertain to the log of that parameter. Fortunately this is easily
accomplished if PEST is employed to calculate parameter sensitivities.

3.6.3 Running GENLIN

GENLIN is run using the command:-
genlin infile outfile [derivfile] [/c]

 where:-

infile is a GENLIN input file,

outfile is a GENLIN output file,

derivfile is an optional derivatives output file, and

“/c” is an optional name-checking switch.

Alterations and Upgrades to PEST Utilities 64

GENLIN writes its output file in matrix file format as a one-column matrix (i.e. as a vector).
Observations retain the same names as those supplied in the GENLIN input file while the
single column is provided with the arbitrary name col1.

Optionally, GENLIN can check that parameter names provided in the GENLIN input file
match those provided in a JCO file or column names provided in an ASCII sensitivity matrix
file. It can also check that observation names provided in the GENLIN input file match those
provided in a JCO file or row names provided in an ASCII sensitivity matrix file. It also
checks that parameter and observation ordering is the same in both cases. This checking
functionality is activated using the optional “/c” switch on the command line. GENLIN does
not perform much checking in addition to this. In its normal role it will be run repeatedly by
PEST as part of some kind of optimisation process. In this context, extensive, and possibly
time-consuming, checks of all aspects of input data integrity on each occasion that GENLIN
is run is unnecessary.

Another GENLIN option is the writing of a “derivatives file”. This file is useful when
GENLIN is employed in conjunction with PEST, providing it with “model-generated
derivatives” as an alternative to finite-difference based derivatives, thereby saving PEST the
need to carry out many GENLIN runs in the course of its execution. Note that, in accordance
with PEST’s requirements, derivatives written to this file pertain to native parameters rather
than log-transformed parameters; hence where parameters are log-transformed the entries of
this file will differ from those of the GENLIN input sensitivity file.

3.7 PESTLIN

3.7.1 General

Use of PESTLIN assumes that a complete parameter estimation (regularised or otherwise), or
predictive uncertainty analysis, PEST input dataset exists. It also assumes that a Jacobian
matrix exists for this dataset, together with a run record file in which parameter values
pertinent to this Jacobian matrix are recorded. On the basis of this Jacobian matrix it writes a
GENLIN input dataset, encapsulating a linearised form of the model. It also writes a new
PEST control file so that (regularised) parameter estimation or predictive analysis can be
undertaken on the basis of the linearised model. Because this linearised model will generally
run much faster than the real model, concepts can be tested and/or approximate solutions to
these types of problems can be obtained very quickly indeed.

In most cases the easiest way in which a linearised equivalent of a PEST input dataset can be
built (including a linearised equivalent of the model) is as follows.

1. As stated above, build an entire PEST input dataset based on the real model. Ensure
that this dataset is correct and consistent using the PESTCHEK utility.

2. Set NOPTMAX to -1 in the pertinent PEST control file.

3. Run PEST. PEST will undertake enough model runs to calculate the Jacobian matrix.
Then it will cease execution, recording initial parameter values, together with
uncertainty statistics (if these are calculable), on its run record file.

Alterations and Upgrades to PEST Utilities 65

Alternatively, PESTLIN can be run at the end of a parameter estimation process. In this case
the Jacobian matrix file will contain sensitivities with respect to optimised parameter values
(or, if a minor improvement in parameter estimates occurred on the last iteration, with respect
to near-optimised parameter values), while the run record file will record optimised
parameter values, together with model-generated measurement equivalents calculated on the
basis of these parameters (unless PEST is run using SVD-assist, in which case the PARREP
utility should be employed to construct such a run record file by first constructing a new
PEST control file on the basis of optimised parameters).

3.7.2 Using PESTLIN

PESTLIN is run using the command:-
 pestlin pestinfile pestoutfile linbasename [/d]

where:-

 pestinfile is the filename base of a PEST input dataset,

 pestoutfile is the filename base of a PEST output dataset,

 linbasename is the filename base of a GENLIN linear model dataset, and

 “/d” (optionally) activates PEST external derivatives functionality.

PESTLIN undertakes the following tasks.

1. It reads the PEST control file (whose name is obtained by adding the extension “.pst”
to pestinfile supplied on the PESTLIN command line) to obtain specifications for the
current parameter estimation exercise.

2. It reads the corresponding Jacobian matrix file pestinfile.jco in order to obtain
sensitivities of all adjustable parameters.

3. It reads the corresponding run record file pestinfile.rec in order to obtain the values of
adjustable parameters on whose basis sensitivities were calculated (or, as described
above, numbers which are close to these values), as well as corresponding model
outputs. (These will become parameter and observation offsets in the GENLIN input
dataset written by PESTLIN.)

4. It writes a GENLIN input file named linbasename.in, where linbasename is supplied
on the PESTLIN command line as described above. Through this file GENLIN is
instructed to write an output file named linbasename.out, and to read sensitivities of
adjustable parameters from the file pestinfile.jco. If the /d switch is set on the
PESTLIN command line, GENLIN is also instructed to write a PEST-compatible
external derivatives file named linbasename.drv.

5. It writes an instruction file named linbasenam.ins through which GENLIN-generated
observation values can be read.

Alterations and Upgrades to PEST Utilities 66

6. It generates a template file named linbasename.tpl through which a GENLIN input
file can be written by PEST based on current parameter values.

7. It writes a PEST control file named pestoutfile.pst which formulates the same
parameter estimation problem as that formulated by the original PEST control file
pestinfile.pst, but this time on the basis of a linearised model encapsulated in
GENLIN.

PEST can then be run on the basis of pestoutfile.pst. If PESTLIN is run with the “/d” switch
on its command line, PEST execution should be very fast. Even if it is not, and PEST then
calculates linear model derivatives using finite differences, use of PEST on the linearised
model should still be much faster than use of PEST in conjunction with the original model
due to the fact that the former will probably have a vastly smaller run time than the latter.

Note that the GENLIN dataset constructed by PESTLIN does not make mention of fixed or
tied parameters. Existence of the latter, however, is automatically taken into account through
the fact that sensitivities of parent parameters are a function of the sensitivities of any
parameters that are tied to them; their optimised values are thus also a function of these
parameters. Note also that because tied and fixed parameters are missing from the PESTLIN-
constructed PEST input dataset, optimised parameters recorded in the pestoutfile.par
parameter value file lack these parameters. Fortunately, a newly-modified PARREP can still
be employed to insert parameter values found in pestoutfile.par into the original PEST
control dataset encapsulated in pestinfile.pst to create a new PEST control file based on
optimised parameters. In creating the new PEST control file, tied parameters are simply
assumed to maintain the same ratio with their parent parameters as their initial values do. The
fact that tied parameters are missing from the parameter value file thus does not affect their
ability to be included in a new PEST control file based on the original (nonlinear) model,
written by PARREP to reflect optimised parameter values.

3.8 PARREP
The role of PARREP is to replace initial parameters in a PEST control file with parameter
values optimised on a previous PEST run. It reads a parameter value file produced during that
run to obtain a set of new parameter values. These are then directly substituted for parameter
values in the existing PEST control file in creating the new PEST control file.

Up until now, PARREP insisted that all parameters cited in the existing PEST control file be
cited in the parameter value file. Now, however, it is more forgiving of omissions in the
parameter value file. In particular, if a parameter is tied or fixed in the existing PEST control
file, PARREP will not object if that parameter is omitted from the parameter value file. The
value of a fixed parameter is simply transferred from the existing PEST control file to the
new PEST control file. The value of a tied parameter is calculated from the new value
assigned to its parent parameter on the assumption that the ratio between the two remains the
same in new PEST control file as it was in the old PEST control file.

Alterations and Upgrades to PEST Utilities 67

3.9 OBSREP

3.9.1 General

OBSREP does for observations what PARREP does for parameters. OBSREP reads
optimised model outputs corresponding to observations and prior information from a
“residuals file” produced as an outcome of a previous PEST runs. It then substitutes these
values for “observed values” in the PEST control file. (It should be obvious from this that if
both PARREP and OBSREP are run after completion of a PEST run, the objective function
should be zero.)

3.9.2 Running OBSREP

OBSREP is run using the command:-
obsrep resfile pestfile1 pestfile2

where

resfile is the name of a “residuals file” written by PEST (extension “.res”),

pestfile1 is the name of an existing PEST control file, and

pestfile2 is the name of the new PEST control file to be written by OBSREP.

In most cases the residuals file resfile will have been produced by PEST on the basis of a run
undertaken using pestfile1 as the PEST control file. However this does not have to be the
case. OBSREP will work correctly as long as every observation and prior information
equation cited in the pestfile1 PEST control file is also cited in the resfile residuals file. If
resfile cites other observations and/or prior information items, and/or these are listed in a
different order in resfile from that prevailing in pestfile1, OBSREP will not object. However
if any observations or prior information items cited in pestfile1 are missing from resfile,
OBSREP will cease execution with an appropriate error message.

3.10 PWTADJ1

3.10.1 General

One of the decisions that must be made prior to undertaking a parameter estimation run, is the
weight to assign to different observations. In some cases weights should be assigned as the
inverse of the uncertainty associated with each observation. However in other cases different
weighting strategies should be employed. For example, if regularised inversion is being
carried out, and if a particular observation, or group of observations, is more salient to a
critical prediction required of a model than other observations, then there is justification for
giving greater weight to the pertinent observation(s) in the parameter estimation process. See
Moore and Doherty (2005) for a more complete discussion of this issue. In other cases it may
be desirable that each type of observation be allowed to make a significant contribution to the
estimation of model parameters, irrespective of how many actual observations comprise that
data type, especially in instances (which can occur often in surface water model calibration)
where a multi-component objective function is formed through processing raw observation

Alterations and Upgrades to PEST Utilities 68

data in different ways in order to extract from this data information pertinent to different
parameters.

PEST allows observations (and prior information equations) to be divided into different
groups. The contributions made to the total objective function by these different groups is
written to both the screen and to the run record file at the beginning of the parameter
estimation process, and at all stages of it. One often-used technique for determining
appropriate relative weighting of different observation groups is to undertake the following
procedure.

1. Build a PEST input dataset in which correct intra-group weighting has been set for all
observation groups, but for which the weighting strategy between groups is yet to be
determined.

2. Run PEST with the NOPTMAX control variable set to zero. PEST will then run the
model just once and print to the screen, and to the run record file, the contribution
made to the objective function by each observation group.

3. In the PEST control file, multiply all weights pertaining to each observation group by
a group-specific factor such that the contribution made to the objective function by
each observation group will be about the same as that made by every other group after
these factors are applied.

If this procedure is followed then, at the beginning of the parameter estimation process at
least, no observation group will dominate the objective function, nor will be dominated by
other observation groups.

PWTADJ1 was written to automate this weights adjustment strategy.

3.10.2 Running PWTADJ1

PWTADJ1 is run using the command:-
PWTADJ1 casename pestoutfile contribution

where

 casename is the name of an existing PEST case (that is, the filename base of an
existing PEST control file);

 pestoutfile is the name of a new PEST control file; and

 contribution is a real, positive, number designating the desired contribution of each
observation group to the overall objective function.

PWTADJ1 undertakes the following tasks:-

1. It reads the existing PEST control file, ascertaining the names of all observation
groups cited in that file.

2. It reads the corresponding run record file, ascertaining the contribution made to the

Alterations and Upgrades to PEST Utilities 69

objective function by each observation group after the first model run (this being
based on initial parameter values).

3. It writes a new PEST control file in which observation weights are adjusted such that,
based on initial parameter values, the contribution made to the objective function by
each observation group will be that desired by the user (i.e. the number supplied as
contribution on the PTWTADJ1 command line).

Note the following aspects of PWTADJ1 operation.

1. casename supplied on the PWTADJ1 command line should not include the extension
“.pst”. However if it does include this extension, PWTADJ1 will remove it, assuming
that casename is actually the filename base of this file. It will then read files
casename.pst and casename.rec, on the assumption that the latter is the run record file
corresponding to the former. If these two files are incompatible (PWTADJ1 checks
only observation group names) PWTADJ1 will cease execution with an appropriate
error message.

2. If the extension “.pst” is omitted from the name of the PEST control file to be written
by PWTADJ1 (this being the second PWTADJ1 command line argument), PWTADJ1
will add this extension automatically.

3. It is the user’s responsibility to run PEST on the basis of the existing PEST control
file (preferably with NOPTMAX in that file set to zero) in order to generate a run
record file in which initial objective function contributions are recorded.

4. If a covariance matrix is assigned to an observation group, PEST does not adjust
weights for this group, as weights supplied in the PEST control file are not employed
for this group; instead a weighting matrix is calculated on the basis of the supplied
covariance matrix. In this case the user must multiply all elements of the supplied
covariance matrix by a certain factor if objective function equalisation is to take
place; this can be achieved using the MATSMUL utility documented below.
PWTADJ1 writes the adjustment factor to the screen for each affected observation
group.

5. PWTADJ1 adjusts weights for both observations and prior information.

6. If the PEST control file supplied to PWTADJ1 requests that PEST run in
regularisation mode, PWTADJ1 will not adjust weights assigned to any regularisation
group, that is any observation group whose name begins with “regul”.

7. If the PEST control file supplied to PWTADJ1 requests that PEST run in predictive
analysis mode, PWTADJ1 will not adjust the weight assigned to the single member of
the observation group named “predict”. (Be VERY careful when using PWTADJ1 on
a predictive analysis PEST input dataset. You will certainly need to adjust the value
of the PD0 predictive analysis control variable after using PWTADJ1. If
PREDNOISE is set to 1, the weight assigned to the prediction may also require
adjustment.)

Alterations and Upgrades to PEST Utilities 70

8. The PEST input dataset should be checked using PESTCHEK before being supplied
to PWTADJ1.

9. The PEST control file written by PWTADJ1 retains the same NOPTMAX setting as
found in the original PEST control file. If NOPTMAX was set to zero in this file, it is
important to remember to set it to a higher number before undertaking parameter
estimation on the basis of the new PEST control file.

3.11 PWTADJ2

3.11.1 General

PWTADJ2 is similar in many respects to PWTADJ1. Its task is to adjust weights in a PEST
control file. However the target objective function for which weights adjustment is sought is
different from that sought by PWTADJ1. Like PWTADJ2, PWTADJ1 reads the current
objective function, and the contribution made to that objective function by different
observation groups, from a run record file associated with a nominated PEST control file;
objective function details corresponding only to the initial model run are read from this file.

The aim of PWTADJ2 is to provide each observation with a weight that is the inverse of the
standard deviation of noise associated with its measurement. On the assumption that the
nominated PEST control file contains optimised parameter values (this can be ensured using
the PARREP utility if desired), the expected value of the objective function corresponding to
the first model run should then be equal to the number of non-zero observations contained
within the PEST dataset. Similarly, the contribution to the objective function made by each
observation group should then be equal to the number of non-zero weighted observations
comprising the group. Similar considerations apply if a covariance matrix is supplied for an
observation group instead of weights. In that case too, if the covariance matrix is correct, the
contribution made to the objective function by the observation group should be equal to the
number of observations in the group.

Actually, the situation is a little more complicated than this. If parameter values have in fact
been estimated by PEST, then the expected value of the objective function is n – p, where n is
the number of non-zero-weighted observations and p is the number of estimated parameters.
Thus an observation weights adjustment process which multiplies all observation weights by
a factor such that this occurs will ensure that these weights approximate the inverse of
respective measurement error standard deviations. If any observation group employs a
covariance matrix instead of weights, then all elements of the covariance matrix should be
multiplied by the inverse square of the factor by which weights are multiplied in order to
ensure that the total objective function achieves its desired value.

In achieving a target objective function of n or n-p, PWTADJ2 allows the user two options.
All measurement weights can be multiplied by the same factor to achieve this total.
Alternatively, a different multiplier can be employed for each observation group such that the
objective function contribution for each such group is equal to either ng, the total number of
non-zero-weighted members of the group, or ng(n-p)/n; in the latter case the total objective
function is n-p. This latter strategy may be employed in response to the fact that the
parameter estimation process may encounter much more difficulty in fitting some

Alterations and Upgrades to PEST Utilities 71

observations types to field measurements over others. If this is taken as an indication of a
greater-than-anticipated level of noise associated with the offending observation type,
determination of a group-specific weight factor in this manner may allow calculated weights
for that group to better approximate the inverse of noise standard deviation associated with
measurements in the group. It should be noted however that while such a strategy may
certainly prove useful, alteration of the relative weighting of different observation groups in
this manner erodes the theoretical basis for selection of n - p as the expected total objective
function (though this matters little if p is small).

A further problem with the n-p concept arises where regularised inversion is undertaken and
the number of estimated parameters is high (as it often is when the invere problem is solved
through regularised inversion). In this case, even though values may be assigned to many
parameters, the dimensionality of the solution space of the inverse problem may actually be
quite small, so that the number of parameters that are effectively estimated may be little more
than for a traditional over-determined parameter estimation problem. Where SVD is
employed as the regularisation device, the dimensionality of the calibration solution space is
equal to the number of pre-termination singular values. Where Tikhonov regularisation, or
SVD-assist with a Tikhonov component, is employed, the dimensionality of the solution
space can only be guessed.

Despite these limitations, PWTADJ2 can provide a very useful means of replacing weights in
a PEST control file with those that are approximately inversely proportional to the standard
deviation of measurement noise. This can be a useful exercise to perform prior to using one
of the PREDVAR* utilities, or in building a PEST control file that is cited in an observation
uncertainty file in construction of an overall observation covariance matrix.

3.11.2 Using PWTADJ2

PWTADJ2 is run using the command:-
PWTADJ2 pestinfile pestoutfile use_groups [parameter_correction]

where:-

 pestinfile is the name of an existing PEST control file (omit the “pst” extension
if desired);

pestoutfile is the name of the new PEST control file which PWTADJ2 will write;

use_groups must be supplied as “g” or “ng” signifying “groups” or “no-groups”
(this will be further discussed below); and

parameter_correction is the p of the n – p term; if this item is omitted from the
command line, p is assumed to be zero.

Upon commencement of execution, PWTADJ2 reads the nominated PEST control file. Then
it reads the associated run record file. Thus it is assumed that PEST has been run on the basis
of nominated PEST control file. However PWTADJ2 only reads objective function
information pertaining to the first model run from the run record file. Hence in most cases
that PWTADJ2 is used, the NOPTMAX control variable in the PEST control file will have

Alterations and Upgrades to PEST Utilities 72

been set to 0 so that only one model run is carried out by PEST. Furthermore, as suggested
above, on many occasions the PARREP utility will have been employed to install optimized
parameter values as initial parameter values in the “parameter data” section of the PEST
control file.

As discussed above, PWTADJ2 has two options in performing observation weights
adjustment. If the “ng” option for the use_groups control variable is supplied in its command
line, then the adjustment factor by which PWTADJ2 multiplies all observation weights is the
same for all observation groups. However if the “g” option is selected, different adjustment
factors are computed for different groups. In both cases the total objective function after
weights adjustment will be equal to n – p, where p is selected through the final variable on
the command line; if this variable is omitted, p is assumed to be zero. If the “g” option is
selected then, as stated above, PWTADJ2 adjusts weights such that the contribution made to
the objective function by each group individually is equal to ng(n-p)/n where ng is the number
of non-zero-weighted observations in a group, and n is the total number of non-zero-weighted
observations in the entire PEST input dataset.

If, for any observation group, a covariance matrix is used instead of observation weights,
PWTADJ2 does not alter that covariance matrix. Rather it writes to the screen the factor by
which all elements of that matrix must be multiplied to achieve the objective function targets
discussed above. If the covariance matrix is supplied in matrix file format, multiplication of
this covariance matrix by a scalar can be implemented using the MATSMUL utility.

The following aspects of PWTADJ2’s operations should be carefully noted.

1. If the PEST control file nominated on the PWTADJ2 command line instructs PEST to
run in regularisation mode, PWTADJ2 does not adjust weights within any observation
group whose name begins with “regul”. Thus only the measurement component of the
total objective function is altered and not the regularisation component.

2. If the PEST control file nominated on the PWTADJ2 command line instructs PEST to
run in predictive analysis mode, PWTADJ2 does not adjust the weight assigned to the
single member of the observation group “predict”, irrespective of the setting of the
PREDNOISE variable. Thus if the calibration process is informative of predictive
noise, alterations to the weight assigned to the “prediction observation” through
which this noise level is conveyed to PEST must be made by the user.

3. Irrespective of the NOPTMAX setting in the PEST control file read by PWTADJ2,
this variable is set to 50 in the PEST control file written by PWTADJ2. (It has been
found from experience that a user can very easily forget to alter this from its useful
value of zero in the control file supplied to PWTADJ2, and not realize this until
he/she returns to a computer expecting to find a completed PEST run, only to find a
single completed model run.)

Alterations and Upgrades to PEST Utilities 73

3.12 INFSTAT

3.12.1 General

The INFSTAT utility computes a number of observation influence statistics, viz. observation
leverage, Cook’s D, an influence statistic proposed by Hadi (1992), and DFBETAS. For a
complete description of these, see Yager (1998), Hadi(1992), and references cited therein.

Suppose that an overdetermined parameter estimation problem involving n observations and
m parameters is defined by the equation:-

 Xp= h + ε (3.1)

where the n×m matrix represents the linearised action of the model, and the covariance
matrix of measurement noise is given by C(ε). Suppose that a measurement weight matrix Q
is employed in estimation of parameters, such that:

 C(ε) = σ2Q-1 (3.2)

In most cases Q will be a diagonal matrix comprised simply of observation (and prior
information) weights.

Define model-to-measurement residuals r as:-

 r = h – Xp (3.3)

where p are optimised parameters, computed using the formula:-

 p = (XtQX)-1XtQh (3.4)

and h are model outputs to which there are corresponding field measurements computed on
the basis of optimised parameters p.

Define:-

 Z = Q1/2X (3.5)

 f = Q1/2r (3.6)

 H = Z(ZtZ)-1Zt (3.7)

Let hii be the i’th diagonal element of the “hat matrix” H. This is denoted as the “leverage” of
observation i. It can be shown that:-

()
() ii

ii

i

i

h
h

f
h

−
=

1var
var

 (3.8)

 Cook’s Di, a measure of the influence of observation i, is computed as:-

Alterations and Upgrades to PEST Utilities 74

ii

ii
ii h

h
v

m
D

−
=

1
1 2 (3.9)

where νi is the weighted studentized residual corresponding to observation i, computed as:-

ii

i
i hs

f
v

−
=

1
 (3.10)

s2 is an estimate of the error variance σ2 given by:-

 s2 = Ф/(n-m) (3.11)

and Ф is the minimized objective function given by:-

 Ф = rtQr (3.12)

See Yager (1998), and Cook and Weisberg (1982) for a full explanation of the significance of
these statistics.

Hadi (1982) defines a similar influence statistic as:

 () ii

ii

i
t

i

ii
i h

h
fff

f
h

mH
−

+
−−

=
11 2

2
2 (3.13)

DFBETASij is a measure of the influence of observation i on regression parameter j. It is
calculated as:-

()()ii

i

n

k
jk

ji
ij his

f

c

c
−

=

∑
=

1

1

2

β (3.14)

where cji is an entry of the matrix product C = (ZtZ)-1Zt. s(i) is given as follows (Belsley et
al, 1980):-

 () () () 







−

−−
−−

=
ii

i

h
f

smn
mn

is
11

1 2
22 (3.15)

3.12.2 Using INFSTAT

INFSTAT is run using the command:-
 INFSTAT case outfile [nsig]

where case is the filename base of a PEST control file pertaining to a completed PEST run,
and outfile is the name of a file to which INFSTAT will write tabulated leverage, Cook’s D,
Hadi, and DFBETAS statistics. Optionally, for purposes of testing the effect on calculated

Alterations and Upgrades to PEST Utilities 75

statistics of limited precision sensitivities, the number of significant figures employed for
representation of elements of the Jacobian matrix (i.e. the X matrix in the above equations)
can be limited to nsig by the user. If omitted (which would normally be the case), then
elements of the X matrix are represented with the precision with which they are read.

INFSTAT reads the PEST control file case.pst, the Jacobian matrix file case.jco, and the
residuals file case.res from the completed PEST run. Where the previous PEST run was in
regularisation mode, INFSTAT also reads the “resolution data file” case.rdf in order to obtain
optimised regularisation weights. It calculates influence statistics employing the formulas
presented above, and records these statistics in its nominated output file.

The following should be noted.

1. INFSTAT will cease execution with an appropriate error message if the previous
PEST run was undertaken in predictive analysis mode.

2. In any calculation that involves the number of observations and prior information
equations n featured in the parameter estimation process, the count of n does not
include any observation and prior information equation with a weight of zero.

3. As noted in the PEST manual, parameters may have been improved slightly on the
final optimisation run after calculation of the latest set of parameter sensitivities
which occupy the Jacobian matrix file. The PARREP utility can be employed to build
a new PEST control file with optimised parameters supplied as initial parameter
values. If NOPTMAX is set to -1 in this file, PEST will calculate derivatives on the
basis of these parameters, record these derivatives, as well as other statistics, and then
cease execution. The user may wish to employ central derivatives for extra precision
if this is done. Note however that this procedure is inappropriate if PEST was run in
regularisation mode as optimised regularisation weight factors are not transferred to
the new PEST control file by PARREP.

4. In recording observation names to its output file, an underscore is added to those
observation names that belong to a group for which a covariance matrix is supplied
instead of observation weights. In this case, the “observations” for which influence
statistics are calculated are not really the nominated observations at all, but linear
combinations j of the original observations h defined as:-

j = C-1/2h (4.44)

where C is the user-supplied observation covariance matrix for the pertinent
observation group.

5. Where PEST is run in regularisation mode, calculation of influence statistics includes
the effects of regularisation prior information and regularisation observations.
However, due to the fact that weights for these observations and prior information
equations are calculated by PEST on the basis of a user-supplied target objective
function instead of an optimised objective function, and do not reflect the uncertainty
of these observations and prior information, Cook’s D and DFBETAS statistics do not
have the same meaning in this context. In fact, it is difficult to know just what

Alterations and Upgrades to PEST Utilities 76

meaning they have when PEST is run in regularisation mode. Nevertheless, they are
still calculated and left to the user to interpret.

6. Where singular value decomposition is employed for solution of the inverse problem,
INFSTAT cannot compute influence statistics, for the problem is underdetermined
unless “the solution” is restricted to the same subspace of parameter space as that in
which the previous inversion exercise was carried out (as determined through the
singular value decomposition process). INFSTAT does not undertake SVD in order to
define this subspace; rather it ceases execution with an appropriate error message.

7. Where SVD-assist was implemented for solution of the inverse problem, INFSTAT
will indeed compute influence statistics. However the user should bear in mind that
these pertain to the inverse problem as posed in terms of super parameters rather than
base parameters; this is apparent from an inspection of the DFBETAS table produced
by INFSTAT. To ascertain the base parameter composition of each super parameter,
use the PCLC2MAT utility.

8. As well as influence and DFBETAS statistics, INFSTAT presents a summary of
important observations (and parameters which they influence), “importance” being
established on the magnitude of these statistics with respect to thresholds as outlined
in the references below (and listed in the various printed summaries). It should be
noted that the establishment of threshold is somewhat arbitrary (Hadis 1992), and in
the case of the Hadis statistic, the relative influence of observations can have a large
effect because the calculation of the threshold uses the mean and standard deviation
of the influence values. Thus, if one or more observations are orders of magnitude
more influential than the others, the cutoff might remove observations that are
influential (Hadis, 1992). In addition to observations greater than the Hadis
threshold, INFSTAT provides the user with a report of influence that lists the 90-100th
percentile and 80-90th percentile for comparison.

9. If, for some reason, a DFBETAS statistic for a particular parameter/observation
cannot be calculated (as can sometimes occur because of a zero-valued denominator
in equation 3.15), a value of -1.0E35 is recorded in the pertinent location on the
INFSTAT output file. In many cases the zero-valued denominator is indicative of
high influence, so these observations are listed as having DFBETAS influence.
However, the value of DFBETA reported for these observations is not representative.

3.12.3 References

Belsley, D.A, Kuh, E. and Welsch, R.E., 1980. Regression Diagnostics: Identifying
Influential Data and Source of Collinearity. John Wiley, New York.

Cook, R.D. and Weisberg, S., 1982. Residuals and Influence in Regression. Monogr. Stat.
Appl. Probability, vol 18, Chapman and Hall, New York, 1982.

Hadi, A.S., 1992. A new measure of overall potential influence in linear regression.
Computational Statistics and Data Analysis, 14, 1-27.

Yager, R.M., 1998. Detecting influential observations in nonlinear regression modelling.

Alterations and Upgrades to PEST Utilities 77

Water Resourc. Res., 34:7, 1623-1633.

3.13 WTSENOUT

3.13.1 General

“WTSENOUT” stands for “WeigTed SENsitivity and model OUTputs”. WTSENOUT
undertakes the following tasks.

1. It reads a PEST control file and corresponding JCO and RES files (these being the
binary Jacobian file and the residuals file respectively produced as an outcome of
running PEST).

2. It calculates Q1/2X where Q is the weight matrix and X is the Jacobian matrix for the
current problem. As is explained elsewhere, sensitivities in this matrix pertain to only
adjustable parameters; furthermore they include the effects of logarithmic
transformation and of any parameters that may be tied to them.

3. It computes Q1/2o where o is the model output vector corresponding to best-fit
parameters.

4. It writes Q1/2X to a binary JCO file (from which an ASCII version can be obtained
using the JACWRIT utility).

5. It writes the Q1/2o vector to an ASCII file in PEST matrix file format (see elsewhere
in this addendum for definition of this format).

The following features of WTSENOUT should be noted:-

1. WTSENOUT will cease execution with an appropriate error message if the PEST
control file does not inform PEST to run in parameter estimation mode; thus an error
condition will arise if PEST has been run in regularisation or predictive analysis
modes. (If the previous PEST run did, in fact, employ one of these modes, it is a
simple matter to create a new PEST control file in the new mode, use PARREP to
supply it with previously optimised parameters as initial parameters, and employ the
JCO2JCO utility to create a corresponding Jacobian matrix file. PEST can then be run
with NOPTMAX set to -1 or -2, and with the “/i” switch employed on the command
line, thus using this JCO file instead of re-computing sensitivities. In this way a PEST
input/output dataset for use with WTSENOUT can be constructed without the need to
re-compute parameter sensitivities.)

2. It is possible that the best set of parameters, and the model outputs corresponding to
these as found in the residuals file, will have been calculated on the very last PEST
upgrade attempt, immediately prior to cessation of PEST execution. The Jacobian
matrix stored in the JCO file will then corredpond to the iteration just prior to this,
and hence will not correspond exactly to the optimised parameter set. If this is the
case, and if the user would like exact correspondence between the JCO file and the set
of model outputs calculated on the basis of best-fit parameters, a new PEST control
file can be created containing optimised parameters using the PARREP utility. PEST

Alterations and Upgrades to PEST Utilities 78

can then be run with NOPTMAX set to -1 or to -2 to compute the pertinent Jacobian
matrix.

3. WTSEBOUT will accommodate the provision of covariance matrices for one or more
observation groups in the PEST control file.

3.13.2 Running WTSENOUT

WTSENOUT is run using the command:-

 wtsenout pestfile matfile jcofile

where

 pestfile is the name of a PEST control file employed as the basis for a previous PEST
run,

 matfile is the name of the weighted model matrix output file (i.e. the file which will
contain Q1/2o), and

 jcofile is the name of the output weighted sensitivity file (i.e the binary file which
will contain Q1/2X).

PEST reads the nominated PEST control file and the JCO and RES files (i.e the Jacobian
matrix and residuals files) associated with it. It obtaines the names of these latter two files by
affixing the pertinent extensions to the same filename base as that supplied for the PEST
control file. (The user should ensure that the new JCO file written by WTSENOUT has a
different name from this.)

matfile and jcofile are WTSENOUT output files. The first is a matrix file, which will be used
for recording the Q1/2o vector. The second is a binary Jacobian file; this must have an
extension of “.jco”. An ASCII version of this file can be produced using the JACWRIT
utility.

3.14 ADDREG1

3.14.1 General

ADDREG1 adds a simple set of regularisation prior information equations to a PEST control
file. An equation is added for each adjustable (i.e. non-tied and non-fixed) parameter cited in
the file. In each of these equations the parameter (or its log, depending on its transformation
status) is assigned a value equal to its initial value (or the log of its initial value). Thus it is
assumed (as is good practice in undertaking regularised inversion) that parameter initial
values are preferred values.

All prior information equations are assigned a weight of 1.0. Each is provided with a name
which is the same as the name of the parameter which it cites.

Collectively, the prior information equations added to the PEST control file by ADDREG1

Alterations and Upgrades to PEST Utilities 79

are designed for use as a Tikhonov regularisation device. Hence each such equation is
assigned to a regularisation group whose name begins with “regul”. ADDREG1 provides the
second part of this name with the first six letters of the parameter group to which the
pertinent parameter belongs. With parameter reglarisation prior information equations thus
assigned to different regularisation groups, the IREGADJ variable in the “regularisation”
section of the PEST control file should be set to 1 to allow PEST to vary regularisation
weights between groups, thus (hopefully) complimenting the information content of the
calibration dataset as it pertains to parameters belonging to each parameter group. If such
division of regularisation prior information equations into different groups is ether too
restrictive or is insufficiently reflective of the different roles played by different parameter
types, the user can alter the groups to which parameters are assigned in the original PEST
control file and re-run ADDREG1, or simply manually edit the ADDREG1-generated PEST
control file. Note that the names of the new regularisation groups are added to the
“observation groups” section of the new PEST control file; hence the ADDREG1-generated
PEST control file should receive the approval of PESTCHEK.

3.14.2 Using ADDREG1

ADDREG1 is run using the command:-
 addreg1 pestinfile pestoutfile

where pestinfile is the name of an existing PEST control file and pestoutfile is the name of a
PEST control file which ADDREG1 must write.

Irrespective of whether the first PEST control file requires PEST to run in “estimation”,
“predictive analysis” or “regularisation” mode, ADDREG1 sets the PESTMODE control
variable to “regularisation” in the file which it writes. It also writes a “regularisation” section
to the new PEST control file. If a “regularisation” section is present in the old PEST control
file, values for PHIMLIM and PHIMACCEPT are transferred from the old file to the new
one. If not, ADDREG1 assigns PHIMLIM a value of 1.0 and PHIMACCEPT a value of 1.05
in the new PEST control file; these may warrant alteration by the user. However a value for
the FRACPHIM variable is recorded in the new PEST control file, this value being 0.1. Thus,
during any iteration of the parameter estimation process, the target objective function “seen”
by PEST is 0.1 times its value at the beginning of that optimisation iteration. Also,
ADDREG1 assigns IREGADJ a value of 1.

3.15 RANDPAR

3.15.1 General

RANDPAR generates model parameter value realisations using a random number generator.
The parameters for which it must generate realisations are read from an existing PEST
control file. The RANDPAR-generated random numbers are inserted into a series of PEST
parameter value files which complement the original PEST control file. The TEMPCHEK
utility can then be used to insert these parameter sets into model input files. Alternatively, the
PARREP utility can be employed to insert them into a series of PEST control files; if PEST is
then run with NOPTMAX set to zero in each of these files, the objective function
corresponding to each set of parameter values can be calculated.

Alterations and Upgrades to PEST Utilities 80

Two options are provided for the distribution type through which the random parameter
values are generated. The first option is to employ a uniform distribution. In this case the
upper and lower end of the parameter range is taken as the upper and lower bounds of
respective parameters as recorded in the PEST control file. If a parameter is log-transformed,
then the log of the parameter is assumed to possess a uniform distribution, rather than the
parameter itself. No correlation is permitted between parameter values if a uniform
distribution is specified.

Where a normal distribution is specified, parameter variances/covariances must be supplied
through a parameter uncertainty file (see elsewhere in this manual for a description of this
file type). If a covariance matrix with non-zero off-diagonal elements is cited in this file, then
correlation can exist between (some or all) parameters. It is important to note, that if a
parameter is log-transformed in the PEST control file read by RANDPAR, then it is assumed
that uncertainties and correlations supplied in the parameter uncertainty file pertain to the
logs of the respective parameters rather than to the native parameters.

Random values are not generated for parameters which are fixed in the PEST control file read
by RANDPAR. Nor are they generated for tied parameters; instead the values assigned to
tied parameters are such that the ratio of initial values between tied parameters and those to
which they are linked as supplied in the original PEST control file is preserved.

Parameter realisations can be filtered such that those that do not respect certain user-supplied
ordering relationships as expressed in a “parameter ordering file” are rejected, to be replaced
by realisations that do, in fact, respect these relationships.

3.15.2 Using RANDPAR

RANDPAR data inputs are supplied through user responses to prompts, rather than through
the command line.

RANDPAR commences execution by prompting for the name of the PEST control file which
it must read:-
 Enter name of existing PEST control file:

in response to which the name of an existing PEST control file should be supplied. Next it
asks:-
 Use (log)normal or (log)uniform distrib for param generation? [n/u]:

Respond with “n” or “u” as appropriate. Note that the choice of lognormal/normal or
loguniform/uniform distribution is made on the basis of the parameter transformation status
as recorded in the PEST control file. Note also that random numbers are not generated for
fixed or tied parameters. The former retain their fixed value in all realisations; the latter are
assigned values that preserve the initial value ratios as defined in the PEST control file.

If any parameters are tied, RANDPAR asks:-
 Respect parameter ranges (tied parameters)? [y/n]:

This question is necessary because in preserving the ratios between tied and parent parameter
values, the former may transgress their bounds as the latter are assigned random values
between those bounds. If the answer to the above prompt is “n”, then the fact that tied

Alterations and Upgrades to PEST Utilities 81

parameters may transgress their bounds is ignored. If it is “y”, then tied parameters are
clipped at their bounds, thereby destroying the tied parameter – parent parameter ratio
decreed in the PEST control file.

If a normal distribution is requested, RANDPAR needs to acquire more information than it
does for generation of parameter sets according to a uniform distribution. It asks:-
 Compute means as existing param values or range midpoints? [e/m]:

The user is presented with two choices here. In generating random numbers which belong to
a normal distribution a mean value is required. RANDPAR can accept the initial parameter
value as supplied in the PEST control file as the mean value of each parameter. Alternatively
it can compute the mean as midway between the lower and upper bound of each parameter as
supplied in the PEST control file (or midway between the logs of the lower and upper bounds
if a parameter is log-transformed).

Next (for a normal distribution only) RANDPAR asks:-
 Respect parameter ranges? [y/n]:

or if any parameters are tied:-
 Respect parameter ranges (parent parameters)? [y/n]:

If the response to the above prompt is “y”, then if any parameter realisation lies below or
above the upper bound of the parameter as recorded in the PEST control file, RANDPAR
will assign the parameter a value equal to the parameter lower or upper bound respectively.
Alternatively, if the answer is “n”, bounds will be ignored in the generation of parameter
values.

If any parameters are tied, RANDPAR next prompts (as it does for the uniform distribution
option):-
 Respect parameter ranges (tied parameters)? [y/n]:

The response to this question has the same effect as it does where parameters are assigned a
uniform distribution, as discussed above.

If a normal distribution was specified for the generation of random realisations, the name of a
parameter uncertainty file is next acquired. The format of this file is discussed in
documentation for program RESWRIT. Within this file, uncertainties can be supplied on a
parameter-by-parameter basis; alternatively one or a number of parameter covariance
matrices can be supplied.

RANDPAR next asks (for both normal and uniform distributions):-
 Enter name of parameter ordering file (<Enter> if none):

An example of a parameter ordering file follows:-
parameter ordering file

h2 > h1
ro2 > ro1
ro10 > ro2

A Parameter Ordering File.

Alterations and Upgrades to PEST Utilities 82

Each line of a parameter ordering file must cite the names of two parameters; these
parameters can be adjustable, tied or fixed in the PEST control file. Parameter names must be
separated by a “>” or a “<” character. Parameter realisations which do not satisfy the
supplied relationships will be rejected. Thus, for any one parameter value file which it writes,
RANDPAR will continue to generate realisations until a realisation is finally obtained for
which all relationships expressed in the parameter ordering file are respected. However if,
after 1000 attempts, such a parameter set is not achieved, RANDPAR will cease execution
with an appropriate error message. The user is then advised to set parameter ordering
relationships less restrictively (or alter the variables governing the probability functions on
which basis parameter realisations are generated), and then re-run RANDPAR.

RANDPAR’s next prompt (irrespective of distribution type) is:-
 Enter integer random number seed (<Enter> if default):

Supply a positive integer, or simply press the <Enter> key. Random number sequences are
identical for the same random number seed; to generate different sets of parameter values,
use different seeds.

Finally RANDPAR asks:-
 Enter filename base for parameter value files:
 How many of these files do you wish to generate?

Suppose that you supply a filename base of “base”. Then parameter value files written by
RANDPAR are named base1.par, base2.par, base3.par etc.

3.16 JCODIFF
JCODIFF subtracts the contents of one Jacobian matrix file from that of another. It can be
useful when exploring the uncertainties or error variances pertaining to predictive differences
rather than to predictions themselves. The former are often far smaller than the latter.

JCODIFF is run using the command:-

 jcodiff jcofile1 jcofile2 jcofile3

where

 jcofile1 is an existing Jacobian matrix file,

 jcofile2 is another existing Jacobian matrix file, and

 jcofile3 is a new Jacobian matrix file, written by JCODIFF, containing a Jacobian
matrix which is the difference between the above two.

Note the following.

1. The first and second matrix files cited on the JCODIFF command line must contain
the same number of rows and columns; they must also cite the same
parameters/observations in the same order.

2. The matrix contained in the second Jacobian matrix file is subtracted from that

Alterations and Upgrades to PEST Utilities 83

contained in the first in forming the matrix written to the third Jacobian matrix file.

3.17 JCOCOMB

3.17.1 General

JCOCOMB reads one Jacobian matrix file (i.e. JCO file) and writes another. Observations
pertaining to the second JCO file are user-specified linear combinations of those recorded in
the first; hence JCOCOMB combines sensitivities in the same proportions.

Use of JCOCOMB requires that a PEST control file and complimentary JCO file be already
in existence. A second PEST control file must also have been prepared. This must cite the
same parameters in the same order as the first control file. Also, all parameters must have the
same tied/fixed/transformation status in the second PEST control file as they do in the first.
However observations cited within the second PEST control file will be different. It is
JCOCOMB’s task to compute the sensitivities of these observations to all parameters.

3.17.2 Observation Combination File

The relationship between observations cited within the second PEST control file and those
cited within the first PEST control file must be supplied by the user through an “observation
combination file”. An example of such a file follows.
* composite_observation “car1”
ar1 1.0
ar2 2.0
* composite_observation car2
"ar17" 0.5
ar18
ar16 0.5
* composite_observation car3
pi1 0.2
pi2 0.3

 An observation combination file.

An observation combination file is subdivided into sections. Each such section must begin
with a string of the type “* composite_observation observation_name” where
observation_name is the name of an observation cited in the second PEST control file. This
can be surrounded by quotes if desired.

Each of the following lines within each section of the observation combination file should
contain two entries. The first is the name of an observation cited in the first PEST control file
(optionally surrounded by quotes). The second is the factor by which its sensitivities with
respect to each parameter should be multiplied in forming the sensitivity of the composite
observation to which that section of the observation combination file pertains. Each section
of the observation combination file can have as many entries as desired. Sensitivities for each
of the observations cited within that section (as read from the JCO file associated with the
first PEST control file) are simply multiplied by the pertinent factor and summed (for each
adjustable parameter) to compute the sensitivities of the composite observation to all such
parameters. Composite observation sensitivities are then recorded in a JCO file that
compliments the second PEST control file.

Alterations and Upgrades to PEST Utilities 84

The following should be noted.

1. All observations cited in the second PEST control file should be cited in the
observation combination file.

2. There is no requirement that all observations cited in the first PEST control file be
cited in the observation combination file.

3. An observation from the first PEST control file can be cited more than once in the
observation combination file; that is, it can contribute to more than one composite
observation.

3.17.3 Using JCOCOMB

JCOCOMB is run using the command:
 jcocomb casename1 casename2 combfile

where

 casename1 is the filename base of the first PEST control file;

 casename2 is the filename base of the second PEST control file; and

 combfile is the name of an observation combination file.

JCOCOMB reads the first PEST control file and corresponding JCO file. It then reads the
second PEST control file and then the observation combination file. Finally it writes a JCO
file corresponding to the second PEST control file.

Note the following:-

1. JCOCOMB only reads the “control data”, “parameter data” and “observation data”
sections of the second PEST control file. There is thus no requirement for instruction
files to be cited within this file which inform PEST how model outputs corresponding
to these observations are to be read from model output files. So while this file may not
be useable for a parameter estimation run, it is nevertheless useable by utilities such
as the PREDVAR* and PREDUNC* suites which also ignore the instruction and
template files cited within a PEST control file.

2. JCOCOMB makes no alterations to the second PEST control file. Also, the values
assigned to these observations, and the weights that are assigned to them, are ignored
by JCOCOMB.

3. The first PEST control file may cite items of prior information. Composite
observations listed in the observation combination file may indeed cite the names of
these prior information equations as “observation names” within respective sections
of that file. However no prior information must be cited in the second PEST control
file.

JCOCOMB can be useful prior to PREDVAR* and PREDUNC* processing, where

Alterations and Upgrades to PEST Utilities 85

predictive errors and uncertainties are computed for averaged quantities and compared with
those pertaining to individual quantities. In many circumstances the error and uncertainty
variances associated with averaged quantities are significantly less than for predictions
pertaining to fine system detail. When used in this manner, the composite observations
contained within the second PEST control file will actually be model predictions made under
user-specified model input circumstances. Sensitivities written to the second JCO file by
JCOCOMB will then be extracted for the use of the PREDVAR* and PREDUNC* by the
JROW2VEC utility prior to PREDVAR* and PREDUNC* processing.

3.18 PNULPAR

3.18.1 General

PNULPAR compliments the use of RANDPAR in undertaking Monte-Carlo analysis.
However, while RANDPAR-generated fields can be employed in Monte Carlo analysis that
does not enforce calibration constraints, PNULPAR can be employed in Monte-Carlo
analysis that does.

PNULPAR reads a set of parameter value files generated by RANDPAR. Supposedly, the
sets of random parameters contained within these files have been generated on the basis of a
PEST control file (referred to herein as a “pre-calibration PEST control file”) in which initial
parameter values are expected (or average) parameter values within an area of interest, or at a
particular study site. (Note that the expected value can be different for each parameter.)

Use of PNULPAR is also predicated on the assumption that another PEST control file exists,
similar to the first except for the fact that it contains calibrated parameter values as initial
parameter values (this is referred to herein as the “post-calibration PEST control file”). Such
a file can easily be produced using the PARREP utility following a PEST calibration run. A
corresponding JCO file must exist; this may have been produced by running PEST on the
basis of the post-calibration PEST control file with NOPTMAX set to -1 or -2 in that file. It
could also have been produced (without the necessity to undertake any model runs) using the
JCO2JCO utility (supplying the names of the first and second PEST control files after the
calibration process is complete), or simply by copying the JCO file pertaining to the first
PEST control file (computed on the basis of the calibrated parameter set achieved at the end
of the previous PEST run) to a JCO file appropriately named to complement the second
PEST control file (this having the same filename base as the post-calibration PEST control
file, but possessing an extension of “.jco”).

PNULPAR reads the sets of parameter value files produced by RANDPAR, writing a new set
of parameter value files in which parameter values are modified from those occurring in the
RANDPAR-generated files. In generating these new parameter value files PNULPAR
undertakes the following operations.

1. It undertakes singular value decomposition of Q1/2X where Q is the observation
weight matrix and X is the Jacobian matrix pertaining to the post-calibration PEST
control file. (Because of the similarity of the two, Q thus also pertains to the pre-
calibration PEST control file.) It asks the user for the dimensionality of the calibration
solution space. This is the number of dimensions spanned by those columns of the V

Alterations and Upgrades to PEST Utilities 86

matrix corresponding to significantly non-zero singular values, where singular value
decomposition of Q1/2X is described by the following formula:-

Q1/2X = USVt

(In the following it is assumed that V = [V1 V2] where V2 is an orthogonal matrix
whose columns span the calibration null space.)

2. Suppose that the elements of the vector p comprise the set of parameter values
contained within a particular RANDPAR-produced parameter value file. Let p
describe the set of parameters contained (as initial parameter values) within the post-
calibration PEST control file read by PNULPAR; thus p calibrates the model.
PNULPAR next computes p-p (taking parameter transformation status into account).

3. Components of parameter differences encapsulated in p-p that possess a non-zero
projection onto the calibration solution space are then removed by computing a set of
“projected parameter differences” pd using the equation:-

pd = V2V2
t(p-p)

4. A new set of parameter values is then produced by adding pd to p (contained in the
post-calibration PEST control file). These values are written to a new parameter value
file.

With the exception of singular value decomposition of the Q1/2X matrix (which is only
undertaken once), PNULPAR undertakes each of the above operations for every existing
RANDPAR-generated parameter value file that it encounters, writing a new parameter value
file in each case as an outcome of these calculations.

Note that the ratios of tied parameters to parent parameters are preserved by PNULPAR
(unless bounds are encountered – see below). In fact if the ratio of any tied parameter to its
parent parameter in the post-calibration PEST control file read by PNULPAR is different
from the ratio of these same parameters in any RANDPAR-generated parameter value file,
PNULPAR will cease execution with an appropriate error message. (This should cause no
problems in normal RANDPAR operation, as RANDPAR preserves the ratio of tied to parent
parameters as it generates random values for the latter.)

The handling of fixed parameters is different. If a fixed parameter has a different value in a
parameter value file from that in the PEST control file, the value in the parameter value file
prevails. This strategy has advantages in certain instances of groundwater model calibration
where, for example, the PPSAMP utility is used instead of RANDPAR for generation of
random parameter values. However the problem should never occur with RANDPAR as it
respects the value of fixed parameters, and does not generate random values for them.

3.18.2 Using PNULPAR

PNULPAR commences execution with the prompt:-
 Enter name of PEST control file:

Supply the name of a post-calibration PEST control file whose initial parameter values are in

Alterations and Upgrades to PEST Utilities 87

fact calibrated values from a previous PEST run (normally having been inserted into this file
using the PARREP utility). A JCO file must exist, corresponding to this PEST control file.
As stated above, this can be produced using JCO2JCO or the “copy” command. However
following an SVD-assist run (after which best parameters are PARREPed into the post-
calibration PEST control file from a BPA file whose filename base is the same as that of the
base PEST control file on which SVD-assisted calibration was based), a post-calibration JCO
file should be produced through running PEST on the basis of the post-calibration base PEST
control file with NOPTMAX set to -1 or -2 in this file.

PNULPAR next prompts:-
 Does PEST control file contain calibrated parameter values? [y/n]:

If you answer “n” to this question, PNULPAR will cease execution with some salient advice.
Otherwise it prompts:-
 Enter number of dimensions of calibration solution space:

The dimensions of the null space are m minus this number, where m is the number of
adjustable parameters cited in the PEST control file. The dimensions of the calibration
solution space will be equal to the number of singular values employed in SVD-based
solution of the inverse problem, or the number of super parameters employed in SVD-
assisted parameter estimation. Alternatively you can estimated it by undertaking singular
value decomposition of the Q1/2X matrix yourself using the MATSVD utility and counting
the number of significantly non-zero singular values. To facilitate this process, PNULPAR
stores the Q1/2X matrix in PEST matrix file format if requested. It prompts:-
 Would you like to store Q(1/2)X matrix in matrix file format? [y/n]:

and if your answer to this question is “y”:-
 Enter file for storage of matrix:

Next PNULPAR asks:-
 Enter filename base of existing parameter value files:

Suppose that your answer to the above question is “base”. Then PNULPAR will look for files
base1.par, base2.par etc. When it encounters no more files in this sequence, it assumes that it
has found them all. For each such parameter value file it writes a new parameter value file
based on null-space-projected parameter differences as described above. The filename base
of these new files must be supplied in response to the prompt:-
 Enter filename base for new parameter value files:

An extension of “.par” is again assumed. The numeric suffix in each case is the same as that
of the corresponding, existing, RANDPAR-produced, parameter value file.

Having been supplied with all of its input data requirements, PNULPAR undertakes the
computations outlined above, outlining its progress to the screen. Then it ceases execution.

Note that PNULPAR will not accept a PEST control file in which PESTMODE is set to
“prediction” or “regularisation”. So if you wish to employ PNULPAR in the regularised
inversion context (as is often the case), alter PESTMODE to “estimation” and remove all
regularisation observations and prior information equations from the post-calibration PEST
control file. Then either set NOPTMAX to -2 and run PEST to obtain a JCO file, or simply

Alterations and Upgrades to PEST Utilities 88

use the JCO2JCO utility. (As described in its documentation, JCO2JCO easily accommodates
missing observations and/or prior information.) The reason for PNULPAR’s refusal to read a
PEST control file in which PESTMODE is set to “regularisation” is to avoid the potential for
confusion and error; singular value decomposition of the Q1/2X matrix (through which
solution and null spaces are defined) should not include any regularisation information.

3.18.3 What to do Next

Parameter values recorded in parameter value files generated by PNULPAR can be
PARREPed into a PEST control file. NOPTMAX can be set to zero in this file and the
objective function computed in each case. If the model is linear, this objective function
should be the same as that achieved during the previous calibration exercise (or almost the
same, depending on how sharp is the singular value cut-off between parameter and solution
spaces).

Where a model is nonlinear, the use of PNULPAR-generated parameters will probably not
result in a calibrated model. In many cases, however, parameter values can be “warped” back
into calibration with very little effort, often requiring only one PEST iteration. (If desired, set
NOPTMAX to 1 to ensure that only one iteration takes place.) Furthermore, this process can
be made even more inexpensive by employing sensitivities already present in the existing
JCO file computed under calibration conditions (the same JCO file as that read by
PNULPAR). This can be achieved by starting PEST with the “/i” switch and providing the
name of the pertinent JCO file when prompted accordingly.

When undertaking a single-iteration PEST run under these conditions, the following may
help.

1. Set the BROYDEN update parameter JACUPDATE to a high number. Thus on the
second and further attempts to upgrade parameter values during this single iteration,
PEST will have improved the Jacobian matrix on whose basis these upgrades are
computed, this resulting (hopefully) in a lower objective function.

2. Set the Marquardt lambda to a reasonably low number – for example 1.0.

3. Set the PHIRATSUF control variable very low (for example 0.001). Thus PEST will
be forced to test a number of different Marquardt lambdas before the end of the
iteration. Hence an objective function can be found which is as low as it can possibly
be based on current sensitivities. Also, on the second upgrade attempt, the benefits
provided by the Broyden process will come into play.

Where SVD-assist is employed as a calibration device, model re-calibration following
introduction of each new PNULPAR-generated parameter set can be achieved with even
greater model run efficiency. Suppose that the base PEST control file for the original
calibration run is named base.pst and that the corresponding JCO file (the file on whose basis
super parameters are computed) is named base.jco. It is assumed that initial parameter values
contained in base.pst are the expected values for these parameters based on knowledge of the
study site existing prior to implementation of the calibration process. Suppose further that the
super parameter PEST control file (built using SVDAPREP) is named super.pst. It is
assumed that SVDA_SUPDERCALC is set to 1 in this file (this is the SVDAPREP default).

Alterations and Upgrades to PEST Utilities 89

Thus PEST undertakes no model runs for the purpose of super parameter derivatives
calculation during its first iteration; rather super parameter derivatives are automatically
computed on the basis of base parameter derivatives contained in base.jco.

After the calibration process has been completed, a file named base.bpa will have been
written by PEST (which will have been run on the basis of super.pst), this containing
optimised base parameter values. The following steps can then be undertaken to obtain a set
of random parameter values which also calibrate the model. (This process can then be
repeated as many times as desired in order to implement Monte-Carlo based model predictive
error analysis for any number of desired predictions.)

1. Use PARREP to transfer calibrated parameter values contained in base.bpa to a new
PEST control file named base1.pst based on base.pst. This can be done using the
command:-
parrep base.bpa base.pst base1.pst

2. Next set NOPTMAX to -2 in base1.pst and run PEST in order to compute base
parameter sensitivities, these being stored in base1.jco.

3. Copy file base1.pst to base2.pst. Remove regularisation observations and prior
information from this file and tell PEST to run in “estimation mode”. (PNULPAR
requires this.) Then use JCO2JCO to create base2.jco from base1.jco using the
command:-
jco2jco base1 base2

4. Use RANDPAR to generate a suite of parameter value files on the basis of base.pst
and a relevant parameter uncertainty file.

5. Use PNULPAR to generate a set of null-space-projected parameter values based on
the RANDPAR generated parameter values produced in step 4 above. Cite base2.pst
as the pertinent PEST control file.

6. In the “svd assist” section of super.pst, alter base.pst to base1.pst and base.jco to
base1.jco. Thus PEST is instructed to look for initial parameter values in base1.pst
and for the Jacobian matrix on which to define super parameters in base1.jco.

7. In super.pst:-

a. Set RLAMBDA1 to 1.0
b. Set PHIRATSUF to 1e-3
c. Set JACUPDATE to 999
d. Set RELPARMAX to 0.4
e. Set NOPTMAX to 1

8. For each PNULPAR-produced parameter value file, issue the command:-
parrep filen.par base.pst base1.pst

where “filen.par”is the name of the n’th parameter value file written by PNULPAR.
Then run PEST using the command:-
pest super

Alterations and Upgrades to PEST Utilities 90

Thus PEST undertakes one iteration of SVD-assisted parameter estimation from
initial parameter values computed by PNULPAR. Furthermore because
SVDA_SUPDERCALC is set to 1 in super.pst, no model runs are required for
derivatives calculation.

Note that RELPARMAX is set to 0.4 in super.pst (the SVDAPREP default is 0.1) in order to
allow PEST to provide maximum parameter improvement on the single iteration granted to it.
(If problems arise, be prepared to set this to 0.3 or lower.) If Tikhonov regularisation is
employed, it may also be a good idea to lower the target objective function slightly in order
to allow PEST to “aim low”, thus improving its chances of reaching this target in one
iteration.

3.19 DERCOMB1

3.19.1 General

“DERCOMB” stands for “derivatives combination”. The “1” suffix is included in the name
of this utility in anticipation of the fact that it will probably not be the last utility written to
perform a similar role.

DERCOMB1 is made for use in calibration contexts where a model provides its own
derivatives. As explained in the PEST manual, these are read from an external derivatives file
written by the model. This file can be of a compressed or uncompressed type.

Where a model run by PEST is comprised of different executable programs, each of which
can compute derivatives of its own outputs with respect to some or all of the parameters
involved in the current PEST run, then the derivatives file written by each of them will be
incomplete. The role of DERCOMB1 is to build a complete derivatives file by combining
such partial derivatives outputs.

DERCOMB1 must be provided with the names of two derivatives files. The first of these
must be a standard PEST external derivatives file which is “complete” in the sense that its
dimension are NOBS×NPAR where NPAR and NOBS are the numbers of parameters and
observations respectively employed by PEST. Such a file may have been produced, for
example, by the ASENPROC Groundwater Data Utility. Elements of the derivatives matrix
that ASENPROC cannot compute are supplied with a dummy value of -1.11E33, this being
PEST’s expected value for Jacobian elements which have not been determined.

The second derivatives file must be in PEST matrix file format. A derivatives file in matrix
format is written, for example, by the ZONE2VAR1 Groundwater Data Utility. Like the first
file, this file must also contain derivatives of model outputs with respect to parameters as its
elements. However, unlike the first file, it is not necessary that all parameters and
observations cited in the PEST control file be cited in this file. Thus the matrix can have
dimensions that are smaller than NOBS×NPAR. The names of the observations and
parameters to which the derivatives in this file pertain are provided as matrix row and column
names respectively. Each one of these must correspond to an observation or parameter
featured in the PEST control file for the current problem.

Alterations and Upgrades to PEST Utilities 91

DERCOMB1 reads the first derivatives file, and then the second derivatives file. It verifies
that the first has dimensions of NOBS×NPAR. (It does not check parameter and observation
names in this file, as this file does not need to provide these; it is simply assumed that
parameters and observations are represented in the same order as they are in the PEST
control file for the current inversion problem.) DERCOMB1 then reads the matrix file. Every
derivative represented in the matrix file then relaces the corresponding derivative represented
in the external derivatives file. DERCOMB1 then writes a new external derivatives file with
these modified derivatives.

3.19.2 Using DERCOMB1

DERCOMB1 is run using the command:
 DERCOMB1 pestfile matfile derfile1 derfile2

where

 pestfile is the name of a PEST control file,

 matfile is the name of matrix file,

 derfile1 is the name of an existing external derivatives file, and

 derfile2 is the name of a new external derivatives file.

As stated above, the existing PEST external derivatives file must contain a matrix
(represented in either full or compressed form) with dimensions of NOBS×NPAR, where
NOBS is the number of observations cited in the PEST control file and NPAR is the number
of parameters cited in this file. The matrix file must contain a matrix whose dimension are
equal to or less than these; however all observations and parameters cited as row and column
names in the matrix file must also be cited in the PEST control file (though not necessarily in
the same order). DERCOMB1 overwrites derivatives in the existing external derivatives file
with those in the matrix file. It then writes a new external derivatives file with the upgraded
derivatives. If the original derivatives file is supplied in compressed format, then the new
derivatives file written by DERCOMB1 will also employ compressed format.

DERCOMB1 will normally be run as part of a model batch or script file cited in the
“derivatives command line” section of a PEST control file. It will run after the model
components that produce the external derivatives file on the one hand, and the matrix file of
derivatives on the other hand. Where there are many model executables, DERCOMB1 can be
run multiple times as part of the one model.

3.20 JACTEST

3.20.1 General

JACTEST is used to rapidly test the integrity of derivatives calculated by PEST. As is stated
in the PEST manual, success of the Gauss Marquardt Levenberg parameter estimation
process, and particularly of regularised inversion involving many parameters, depends on the
integrity with which derivatives of model outputs with respect to adjustable parameters are

Alterations and Upgrades to PEST Utilities 92

calculated. If numerical instability of the model presents an obstacle to the integrity of
derivatives calculations then this should be recognised. If derivatives’ integrity is
compromised, this does not necessarily mean that PEST cannot be employed with that model.
However high-end PEST usage (particularly predictive uncertainty analysis and SVD-
assisted parameter estimation involving a large number of super parameters) may be
problematical.

3.20.2 Using JACTEST

JACTEST is run using the command:-
 jactest pestfile parname n outfile [/p]

 where:-

pestfile is the name of a PEST control file,

parname is the name of a parameter featured in this file,

n is the number of increments to test,

outfile is the name of the JACTEST output file, and

/p is an optional parallelisation switch.

JACTEST reads a PEST control file. It then runs the model n + 1 times, where n is the
number of increments supplied through the command line (it runs the model once without
any increment). For each but the first of these model runs the value of a user-specified
(through the command line) parameter is varied incrementally. The increment is the same as
that which PEST would use to compute derivatives with respect to this parameter during the
parameter estimation process, the control variables for which are provided in the “parameter
groups” section of the PEST control file. Model outputs calculated on the basis of the
incrementally-varied value of the specified parameter are stored internally. Parameter values
are symmetrically disposed about the pertinent initial parameter value supplied in the PEST
control file; that is, this parameter value is both incremented and decremented for the purpose
of carrying out the requested model runs.

When all model runs are complete, JACTEST writes a table of model-generated observation
values to a user-specified output file. The first row of this table contains values of the
nominated parameter employed for each run. Subsequent rows contain the values of all
model-generated observations calculated during each such model run (with the name of each
observation as the first entry of each row). If the values of selected observations are then
plotted against parameter values (this being easily achieved once the JACTEST-written table
is imported into a spreadsheet), problems with derivative computation, if they exist, will be
readily apparent.

Note the following.

1. Where a PEST control file specifies multiple command lines, JACTEST uses the first
command to run the model.

Alterations and Upgrades to PEST Utilities 93

2. JACTEST will cease execution with an error message if the user-nominated
parameter is tied or fixed.

3. Where the user-specified parameter has other parameters tied to it, the tied parameters
are varied in the same ratio as the parent parameter, in the same fashion as is done by
PEST.

4. Parameter SCALEs and OFFSETs as provided in the PEST control file are respected
in the same manner as for PEST.

5. JACTEST will not transgress parameter bounds. If the addition of n times the
derivative increment to a given parameter value causes that parameter to exceed its
upper bound, JACTEST will subtract the increment instead of adding it to the base
parameter value on successive model runs. If the lower bound is thereby transgressed,
JACTEST will cease execution with an appropriate error message.

6. It may occur that the value of the user-specified parameter, as recorded in the
JACTEST output file, is slightly different from its expected incremented value. This
is a result of the fact that, like PEST, JACTEST adjusts its value slightly if the
presence of a parameter space of limited width on one or more template files cited by
PEST requires that parameter values be written with limited precision.

7. JACTEST does not list prior information values on its output file. (The derivatives of
prior information outputs with respect to parameters always have integrity because
they are simply the coefficients of respective parameters in the prior information
equations.)

3.20.3 Using JACTEST in Parallel Mode

Model runs undertaken by JACTEST can be distributed across a network of computers by
appending the “/p” switch to the end of its command line. In this case, JACTEST reads a run
management file, the filename base of which is the same as that of the PEST control file, but
whose extension is “.rmf”. This file is described elsewhere in PEST documentation.

Operation of JACTEST in parallel mode is the same as that of PEST. Slaves (named
PSLAVE) must be started in working directories on other machines (or maybe on the same
machine if it has multiple processors). Communication between the master program (in this
case JACTEST) and its slaves is through message files – the same message files as used by
PEST. It is the slave, and not JACTEST, which runs the model in each case.

As for parallel PEST, slaves must be started before PEST. However, like parallel PEST,
JACTEST will tolerate the late arrival of slaves.

When run in parallel mode, JACTEST writes two additional files. The first is a parallel run
management file (with the same filename base as the PEST control file, but with an extension
of “.rmr”); this documents the history of communication between JACTEST and its slaves.
The second is a much shorter file which simply lists the number of runs completed at any
time. This also has the same filename base as the PEST control file. However its extension is
“.rcr” (for “run count record”).

Alterations and Upgrades to PEST Utilities 94

3.20.4 Stopping JACTEST

If the PSTOP or PSTOPST command is run in the JACTEST working directory, but from
another window, JACTEST will cease execution. If run in serial mode, it will wait until the
end of the current model run to do this. If run in parallel mode it will cease execution
immediately, but cannot prevent the orphaned model run from reaching completion in the
slave window. All slaves will automatically shut down if the PSTOPST command is used to
terminate JACTEST execution; however they will not shut down if the PSTOP command is
employed. Meanwhile JACWRIT writes all results that it has accumulated to the time of
stoppage to its normal output file.

As for PEST, JACTEST execution can be paused and unpaused by issuing the PPAUSE and
UNPAUSE commands from another window which is opened in its working directory.

3.21 RDMULRES

3.21.1 General

RDMULRES stands for “ReaD MULtiple RESults”. It is used to read identical data from
many different model or PEST output files, the names of these files being distinguished from
each other by an indicial integer. RDMULRES has many uses, two of which are now briefly
discussed.

3.21.1 Monte Carlo Analysis

Monte Carlo analysis may be undertaken by running a model many different times using
different sets of parameters on each occasion. Parameter values may have been generated by
RANDPAR and may have been modified by PNULPAR. Alternatively they may have been
generated by another program altogether.

Suppose that different sets of parameter values reside in parameter value files named
parval1.par, parval2.par etc. Suppose that adjustable parameters reside in only one model
input file, and that this file is named model.in, and that a template for this file is named
model.tpl. Suppose further that the model output file to which results of interest are recorded
is named model.out. Then a sequence of model output files named model1.out, model2.out
etc containing model results calculated on the basis of parameter sets contained in
parval1.par, parval2.par etc can be obtained using the following batch file if working on a
PC. (A similar script file can be readily written for use on a UNIX platform.)

for /L %%i in (1,1,100) do (
tempchek parval%%i.par model.in model.tpl
model.exe
copy model.out model%%i.out)

A batch file in which a sequence of model runs is undertaken.

The above batch file runs the model executable program (in this case named model.exe) one
hundred times. In the sequence “(1,1,100)” the first integer is the starting value, the second is
the step size and the final integer is the finishing value. On each occasion the model output

Alterations and Upgrades to PEST Utilities 95

file is linked to the parameter set on whose basis it was recorded by integer index
(represented by the %%i variable).

3.21.2 A Sequence of PEST Runs

PEST can be used to calibrate a model many different times using many different parameter
sets as starting values. This can be useful in undertaking “null-space Monte Carlo” analysis
where each of a sequence of PNULPAR-generated parameter sets must be “warped back into
calibration”. Suppose that parameter sets to use as initial values in subsequent PEST runs
reside in parameter value files named parval1par, parval2.par etc. Suppose also that a
suitable PEST file is named case.pst and that a copy of this named case.pst.keep has been
made. Suppose also that, as explained in the documentation to PNULPAR, parameter
estimation is actually carried out on super parameters, and that case_svda.pst is the PEST
control file that is employed for this purpose (for which case.pst is the corresponding base
PEST control file). Upon each occasion of cessation of case_svda.pst execution, optimised
base parameter values reside in case.bpa. However the run record file is named
case_svda.rec.

The following batch file can be used to undertake multiple PEST runs on the basis of starting
base parameter value housed in files parval1.par, parval2.par etc.
rem ###
rem Delete an existing record file.
rem ###

del /P record.dat
echo > record.dat
pause

rem ###
rem Do all the PEST runs.
rem ###

for /L %%i in (1,1,100) do (
parrep parval%%i.par case.pst.keep case.pst
pest case_svda
find /I "optimised mea" case_svda.rec >> record.dat
copy case_svda.rec case_svda.rec.%%i
copy case.bpa case.bpa.%%i)

A batch file used for conducting a sequence of SVD-assisted parameter estimation runs.

After running the above batch file, subsequent run record files will be named
case_svda.rec.1, case_svda.rec.2, etc. Respective optimised parameter value files will be
named case.bpa.1, case.bpa.2 etc. Note that a “global record file” named record.dat is also
kept. After each PEST run, the value of the latest optimised measurement objective function
is appended to this file. This allows the user to have in his/her possession a continuously-
updated record of the success or otherwise of the sequence of PEST runs.

3.21.2 The RDMULRES Input File

RDMULRES requires a control file, an example of which is shown below.

Alterations and Upgrades to PEST Utilities 96

An example RDMULRES input control file.

* observations
initobj
finalobj
* instruction file
obj.ins
* model output file
case_svda*.rec
* integer list
1
4 - 10
12
15
16-100
* rdmulres output file
rdmulres.rec

An example RDMULRES control file.

The RDMULRES input control file is subdivided into a number of sections, each of which
begins with a section header. Section headers are as shown in the above example; in each
case their name is preceded by the “*” character followed by a space.

The “observations” section must contain a list of names for the numbers that must be read
from model (or PEST) output files. These must be provided one to a line. As is the normal
PEST protocol, these names must be 20 characters or less in length (and are case insensitive);
names must be unique. Up to 100 such names can be provided. This limit is set in order to
keep the RDMULRES output file at a tractable width.

The “instruction file” section of the RDMULRES control file must contain a single entry, this
being the name of an instruction file. This instruction file must cite all observations named in
the “observations” section of the RDMULRES input file (and no more). Instruction files must
follow the normal PEST protocol. An instruction file suitable for reading the initial and
optimised measurement objective function values from a PEST run record file is illustrated
below.
pif $
$INITIAL CONDITIONS:$
$measurement$ $=$!initobj!
$OPTIMISATION RESULTS$
$Optimised measurement$ $=$!finalobj!

An instruction file which reads a PEST run record file.

The model output file which the instruction file is designed to read must be listed as the sole
filename cited in the “model output file” section which immediately follows the “instruction
file” section of the RDMULRES control file. RDMULRES requires that this filename contain
at least one “*” character. In fact, many such output files are read by the same instruction
file; the name of each is obtained by replacing the “*” character with an appropriate integer
on each occasion.

The integers to employ in formulation of model output filenames in this fashion are listed in
the “integer list” section of the RDMULRES control file. Either one or two integers can be

Alterations and Upgrades to PEST Utilities 97

listed on each line of this section. If two are listed, the second must be larger than the first,
and must be separated from the first integer by a “-” (i.e. dash) character. (Negative numbers
are not allowed.) In this case the “*” character is progressively relaced by all integers
between and including the two nominated integers.

The final section of the RDMULRES control file is the “RDMULRES output file” section.
Numbers read from model output files are recorded in tabular fashion in this file. See below.

If any line within a RDMULRES control file contains no characters, or begins with the “#”
character, it is ignored.

3.21.3 Running RDMULRES

RDMULRES is run by typing the command:-
 rdmulres infile

at the screen prompt, where infile is the name of its control file. If any errors are detected in
this file, RDMULRES ceases execution with an appropriate error message. If not, it reads all
requested model output files, recording to the screen its progress in this endeavour. If any
errors are encountered in reading any such files, it ceases execution with an appropriate error
message. However if a requested file is not present, it records this fact to the screen (and to
its output file) and proceeds to the reading of the next cited file.

An example of a RDMULRES output file is shown below. Observation names head all
columns but the first in the table contained in this file; the first column contains integer index
values used in forming the model output filename from which respective numbers in other
columns are read.
index initobj finalobj
 1 9546.1300 415.1000
 2 1715.0300 196.3000
 3 File case_svda.rec.3 not found.
 4 545.0300 10.95000

Part of a RDMULRES output file.

A RDMULRES output file is easily imported into a spreadsheet or graphing program for
further processing.

3.22 MULPARTAB

3.22.1 General

MULPARTAB stands for “MULtiple PARameter TABle”. It can be used in the
postprocessing of multiple PEST runs undertaken, for example, as part of a “null space
Monte Carlo” analysis. In such an analysis, a model calibration process is repeated many
different times using the same sets of parameters, but with different starting values or base
parameter values (see documentation of the PNULPAR utility). The outcomes of such an
analysis are a suite of run record files, and a suite of corresponding parameter value files. In
most cases these files will have identical names except for the presence of an indicial integer
at some location within each name.

Alterations and Upgrades to PEST Utilities 98

Run record files can be processed using the RDMULRES utility. Such processing can reveal
which calibration exercises resulted in parameter sets that gave rise to an objective function
which can be considered low enough to call the model “calibrated”. Those that do can then
be assimilated into a single table using the MULPARTAB utility. This table can be imported
into spreadsheet and/or graphing software for further processing and/or display.

3.22.2 Using MULPARTAB

MULPARTAB is run using the command:
 mulpartab parfile listfile outfile

 where

 parfile is a generic parameter value file name,

 listfile contains a list of integer indices, and

 outfile is the name of a tabular output file.

The generic parameter value filename must contain at least one asterisk (i.e. “*” character).
In forming the names of actual parameter value filenames, this asterisk is replaced by an
integer in each case. The list of integers to employ in forming parameter value filenames is
supplied in the integer list file (the second filename provided on the MULPARTAB
command line). Thus if the first MULPARTAB command line argument is supplied as
“parval*.par”, then MULPARTAB will look for files named parval1.par, parval2.par, etc, if
the integers “1”, “2” etc are supplied in the integer list file.

As the name suggests, an integer list file must contain a list of integers. An example of such a
file follows.
An integer list file

1
2-4
5
7-20

Part of an integer list file.

Lines beginning with “*” or “#” are ignored in an integer list file; so too are blank lines.
Integers on other lines can be supplied individually, or as the beginning and end members of
a sequence separated by a “-” (dash) character. Negative integers are not allowed.

A MULPARTAB output file is shown below. As is apparent, the file is comprised of multiple
columns, the first of which contains parameter names. Parameter values as read from
parameter value files follow these. Headers for these latter columns are integer indices
comprising part of the filename from which parameters in the respective column were read.

Alterations and Upgrades to PEST Utilities 99
 1 4 6
 ro1 0.9988774 1.348253 1.089392
 ro2 1.040405 1.884527 1.277791
 ro3 1.256830 3.430308 1.930116
 ro4 1.771721 7.359193 3.583956
 ro5 2.611562 17.36130 6.978424
 ro6 3.000000 27.00000 9.000000
 ro7 2.139646 8.553685 4.517614
 ro8 1.265521 2.049192 1.677921
 ro9 0.9782547 1.074042 1.032021
 ro10 0.9753630 0.9830849 0.9765695
 h1 0.2500000 0.2500000 0.2500000
 h2 0.5000000 0.5000000 0.5000000
 h3 1.000000 1.000000 1.000000
 h4 2.000000 2.000000 2.000000
 h5 4.000000 4.000000 4.000000
 h6 8.000000 8.000000 8.000000
 h7 16.00000 16.00000 16.00000
 h8 32.00000 32.00000 32.00000
 h9 64.00000 64.00000 64.00000

A MULPARTAB output file.

The following should be noted.

1. As documented in the PEST manual, the first line of a parameter value file must
contain the word “single” or “double” followed by the word “point” or “nopoint”. If
these are absent from a parameter value file which MULPARTAB is asked to read, it
will terminate execution with an error message.

2. SCALE and OFFSET values are also provided in a parameter value file.
MULPARTAB multiplies parameter values by their SCALE and adds their OFFSET
before recording these values to its output file.

3. All parameter value files read by MULPARTAB must cite the same parameters.
However parameters do not need to be listed in the same order in each file.

4. If an expected parameter value file is absent, MULPARTAB will notify the user of
this fact, and then proceed to read the next parameter value file. Values listed for
missing parameters are replaced with the “---“ string in the respective column of the
MULPARTAB output file.

5. If a parameter value file is, in fact, found, and if an error is encountered in reading
this file, MULPARTAB will cease execution after recording an appropriate message
to the screen.

3.23 COMFILNME
COMFILNME stands for “COMpress FILe NaMEs”. This simple utility can sometimes be
useful in winnowing unwanted output files after many related model or PEST runs have been
carried out, prior to undertaking another analysis step on the basis of the reduced file
collection.

Suppose, for example, that many PEST runs have been undertaken as part of a null-space
Monte Carlo exercise, and that this has resulted in a sequence of parameter value files named

Alterations and Upgrades to PEST Utilities 100

pestcase1.bpa, pestcase 2.bpa, pestcase 3.bpa, etc. Suppose that corresponding run record
files are named pestcase1.rec, pestcase2.rec, pestcase3.rec etc. Use of RDMULRES on the
latter set of files may reveal that a suitably low objective function may not have been
achieved on all of these runs. (This may have occurred if, for example, the NOPTMAX
variable for these runs was set to 1 so that PEST was allowed to undertake just one iteration
in which super parameter derivatives are available “for free” – see documentation of PEST’s
SVDA functionality for details.)

Suppose now that a prediction is to be made using the model, and that this prediction is to be
made using many different parameters sets which calibrate that model, but from which those
which do not calibrate the model must be excluded. Hence non-compliant parameter value
files need to be removed from the set of files generated during the previous set of PEST runs.
This could be achieved by simply deleting these files. However there are certain advantages
to retaining a sequential numbering system for parameter value files in future processing of
this nature. COMFILNME allows such deletions to take place, with higher index filenames
being assigned lower indices to “fill in deletion gaps”.

COMFILNME is run using the command:
comflenme datfile listfile

 where:-

datfile is a generic data or text file name, and

listfile contains a list of integer indices.

The filename supplied as the first COMFILNME command-line argument must contain at
least one asterisk (“*”) character. In forming actual filenames this character is replaced by a
sequence of integers. This sequence is listed in the integer list file whose name is supplied as
the second argument to COMFILNME. The format for an integer list file is provided in
documentation to MULPARTAB.

When run in the above manner, COMFILNME reads each of the nominated data files – that
is, each of the files whose name is formed by replacing the “*” character in datfile by the
integers in the list file. It then generates a sequence of files in which the “*” character is
replaced by “1”, “2”, “3” etc in sequence, with no gaps. In doing this, previous files are
overwritten.

The following should be noted.

• Files represented by datfile must be ASCII (i.e. text) files, and be no more than 3000
characters in width.

• Integers must be supplied in the integer list file in ascending order.

• Suppose that a total of N integers are directly cited or implied (in expressions of the
type n1 – n2) in the integer list file. At the end of a COMFILNME run, members of
the datfile sequence with integer indices beyond N will still remain in the user’s
directory. It is the user’s responsibility to delete these.

Alterations and Upgrades to PEST Utilities 101

• It is a simple matter to relate new file names to old file names. New file indices are
simply “1”, “2”, “3” etc, with these indices assigned to files sequentially in order of
their representation in the integer list file supplied to COMFILNME as its second
command line argument.

3.24 PARAMID

3.24.1 General

PARAMID stands for “PARAMeter IDentifiability analysis”. It performs simple analysis of
the contents of an “SVD file” written by PEST, listing the contributions made by adjustable
parameters involved in the current parameter estimation process to the eigenvectors spanning
the calibration solution space.

Use of PARAMID is based on the following assumptions.

1. A PEST run has just been carried out in which singular value decomposition was
employed for solution of the inverse problem.

2. The EIGWRITE variable was set to 1 in the PEST control file, thus ensuring that the
full eigenvector matrix was written to the SVD file generated by PEST under these
circumstances.

3. The initial Marquardt lambda was set to zero (and NUMLAM set to 1).

4. At least one optimization iteration was carried out before termination of PEST
execution.

Note that if model run times are long and a Jacobian matrix file already exists based on a
PEST run using another solution strategy, there is no need to repeat the run simply to
implement the SVD solution mechanism. Simply alter the PEST control file so that the above
conditions are met (after maybe using the PARREP utility to place optimized parameter
values into this file), and start PEST using the /i switch. It will then prompt the user for the
name of an existing Jacobian matrix file rather than calculating the Jacobian matrix itself.

3.24.2 Using PARAMID

PARAMID is run using the command:-
 PARAMID pestfile outfile

where pestfile is the name of an existing PEST control file (meeting the above requirements)
and outfile is the name of the file to which PARAMID must write the outcomes of its
analysis.

PARAMID reads the PEST control file and the SVD file written by PEST on its previous run.
From the SVD file it determines the number of singular values before truncation, and
therefore the dimensionality of the calibration solution space.

For each adjustable parameter listed in the PEST control file PARAMID determines the

Alterations and Upgrades to PEST Utilities 102

largest (absolute) contribution that this parameter makes to any of the solution space
eigenvectors, as well as the smallest absolute contribution. It records these (as well as the
corresponding eigenvector number) to its output file.

Don’t forget that:-

1. All eigenvectors are normalized; hence the largest contribution that any parameter
can make to an eigenvector is 1.0.

2. Eigenvectors are arranged in order of decreasing singular value. Therefore lower-
numbered eigenvectors correspond to parameter combinations of greater
identifiability.

The following are some conclusions that it may be possible to draw from an inspection of the
PARAMID output file.

1. If the largest contribution that a parameter makes to a solution space eigenvector is
very low, then the parameter is unidentifiable through the calibration process (and is
probably insensitive).

2. If a parameter makes a moderate contribution to only one solution space eigenvector,
then it may still be unidentifiable, for it may be highly correlated with another
parameter.

3. If a parameter makes a significant contribution to a low-numbered eigenvector, then it
can probably be well estimated on the basis of the current calibration dataset.

3.25 POSTJACTEST
JACTEST produces a large output file which can be used to assess the integrity of derivatives
of all model outputs with respect to a parameter nominated on the JACTEST command line.
The JACTEST output file is easily imported into a spreadsheet such as Microsoft EXCEL.
Numbers along any row of this file can then be plotted. Ideally such a plot should reveal a
straight line, or a smooth curve. If not, a potential problem in the finite-difference calculation
of derivatives is indicated.

In many circumstances, the number of observations represented in a JACTEST output file is
daunting. Some methodology for flagging rows of this file that are worthy of plotting is
therefore required. POSTJACTEST peforms this role.

POSTJACTEST is run using the command:
 postjactest jactestfile thresh outfile

where jactestfile is the name of a JACTEST output file, and outfile is the name of a file which
POSTJACTEST will write. Thresh is a threshold value whose role is explained below. This
must be set toa number greater than zero.

POSTJACTEST reads the JACTEST output file line by line. On any line it first computes the
difference between the first and last numbers represented on the line (these corresponding to

Alterations and Upgrades to PEST Utilities 103

a particular model output value computed for a parameter incremented by zero, and then by
several parameter increments respectively). Next it computes differences between successive
model output values. It then computes the difference between the maximum and minimum
such model output difference as a fraction of the model output difference between the first
and last entries on this line divided by the number of parameter increments giving rise to
these outputs. This fractional difference is then recorded on POSTJACTEST’s output file,
together with the observation name to which this calculation pertains.

If the outer difference between model outputs, as well as differences between all
neighbouring model outputs, on any particular line of the JACTEST output file are less than
the threshold specified on the POSTJACTEST command line, then that line is skipped by
POSTJACTEST; the pertinent observation is thus not represented on the POSTJACTEST
output file.

The POSTJACTEST output file is easily imported into a spreadsheet such as EXCEL. It
should then be ordered such that higher slope discrepancies are listed first. The user should
then inspect lines of the JACTEST output file corresponding to observations listed early in
this re-ordered table, graphing the numbers listed on each such line in the manner described
above. If an observation does not have a very low sensitivity, and the plot deviates
significantly from a straight line, this may indicate that poor finite difference derivatives are
inhibiting good PEST performance.

3.26 MULJCOSEN
MULJCOSEN reads a sequence of Jacobian matrix files named case.jco.N where N
represents a sequence of integers starting at 1. Such a sequence of Jacobian matrix files (i.e.
“JCO files”) is written by PEST if the JCOSAVEITN variable in the “control data” section of
the PEST control file is supplied as “jcosaveitn”.

MULJCOSEN is run using the command:
 muljcosen casename obspar aname outfile

where casename is the filename base of a PEST control file, obspar must be supplied as
either “obs” or “par”, aname is the name of an observation or parameter featured in the
nominated PEST control file, and outfile is a file to which MULJCOSEN must record its
output.

MULJCOSEN computes the composite sensitivity of either an observation or parameter on
the basis of each JCO file which it reads. The obspar command-line variable determines
whether the item of interest is in fact an observation or parameter, while the aname command
line variable identifies the particular observation or parameter for which such computation is
required. The formulas through which composite observation and parameter sensitivies are
computed are provided in the PEST manual. In both cases, these formulas involve
observation weights. Hence as well as reading the sequence of Jacobian matrix files
corresponding to the PEST case basename supplied on its command line, MULJCOSEN also
reads the corresponding PEST control file, together with as any observation covariance
matrices cited therein.

Composite sensitivities are written in tabular form to its output file. It is important to note

Alterations and Upgrades to PEST Utilities 104

that if PEST was run in regularization mode, regularization observations/prior information
are ignored in computation of composite parameter sensitivities. If PEST was run in
predictive analysis mode, the prediction is likewise ignored.

3.27 IDENTPAR

3.27.1 General

The purpose of the IDENTPAR utility is to assist in the computation of “parameter
identifiability” indices.

Suppose that a large number of parameters is cited in a PEST control file. Suppose further
that the calibration dataset does not provide sufficient information to allow each of these
parameters to be individually estimated (as is often the case). But suppose you want to know
which parameters are identifiable and which parameters are not, given available calibration
data.

For the purpose of the present discussion, a parameter is said to be “identifiable” if its
projection into the calibration solution space is roughly equal to its magnitude. Or, to put it
another way, a parameter is identifiable if its projection onto the calibration null space is
small. As has been extensively discussed elsewhere in PEST documentation, the solution and
null spaces are orthogonal, and can be defined through undertaking singular value
decomposition of the Q1/2X matrix, where X is the Jacobian matrix computed on the basis of
optimized parameters, or parameters which are considered to be of high likelihood if
calibration has not yet taken place. Q is the weight matrix employed in the current calibration
process (which is mostly – but not always – diagonal).

Singular value decomposition of Q1/2X yields U, S and V matrices, defined as follows:-

 Q1/2X = USVt

where the matrix V is comprised of orthogonal unit vectors which collectively span
parameter space. The matrix S is comprised of diagonal elements only, these arranged in
order of decreasing size. These are the singular values of Q1/2X. Let this matrix be divided
into two submatrices S1 and S2, with the latter containing low and zero singular values. The
corresponding columns of V, these being contained in the V2 submatrix of V, are the
eigenvectors of Q1/2X which span the calibration null space. Columns of the V1 submatrix on
the other hand (these corresponding to the S1 singular values), span the calibration solution
space. Hence:-

 t
22

t
11t

2

t
1

2

1t VUSVUS
V
V

S0
0S

UUSV +=















=

How do we know where the solution space ends and the null space begins? Moore and
Doherty (2005) show that a useful place to draw the line is the point where the error variance
of a prediction begins to rise as singular values and corresponding eigenvectors are moved
from the null space to the solution space (and measurement noise is thus amplified in the
estimation of parameter eigencomponents). However when calibrating a model we do not

Alterations and Upgrades to PEST Utilities 105

usually have predictive sensitivities at our disposal, and hence cannot determine the
truncation point in this fashion.

Another means through which the truncation point can be determined is to examine the error
variance of estimation of the eigenvectors comprising the columns of V; these are of course
available prior to, or during, the calibration process through singular value decomposition of
Q1/2X. These eigenvectors can in fact be employed as “predictions” when using the
PREDVAR1 utility. Recall that use of PREDVAR1 allows calculation of the pre- and post-
calibration (for various numbers of singular values) error variance of a prediction. There is no
reason why a “prediction” cannot be a linear combination of parameters comprising a column
of the V matrix.

If PREDVAR1 is used to evaluate how the error variance of an “eigenvector prediction”
changes as the number of singular values prior to truncation is progressively increased, it will
be found (naturally enough), that no change in predictive error variance occurs until the
singular value is reached corresponding to the eigenvector in question. Then the error
variance may either fall or rise. In general, for eigenvectors corresponding to small singular
values, the predictive error variance will fall as the eigenvector crosses from the null space to
the solution space. For eigenvectors corresponding to large singular values however, the error
variance will rise as the associated singular value is reached, this indicating that the pertinent
eigencomponent should not be estimated at all; that is, the pertinent eigencomponent should
reside in the null space. This then provides the mechanism through which we can determine
where truncation should occur. (As such it also provides a mechanism for determination of
the minimum number of super parameters to employ in an SVD-assisted parameter
estimation process). In short, truncation should occur at that singular value where the error
variance associated with estimation of its associated eigenvector rises rather than falls if it is
included in the solution space.

Suppose that the number of singular values, and associated eigenvectors, to be included in the
solution space is determined in the above (or some other) manner. We then have a means of
evaluating the identifiability of a particular individual parameter. Suppose, for example, that
the parameter in question is that corresponding to the second row of the X matrix. Thus it
will pertain to the second row of the V matrix, and hence to each of the orthogonal
eigenvectors comprising the columns of V. To the extent that elements of the V1 eigenvectors
have a large second (in this case) element, this second parameter is featured strongly in the
solution space; to the extent that these elements all approach zero, the parameter in question
is not strongly featured in the solution space and is hence unidentifiable.

We define the identifiability of parameter i as:-

 di = Σ(V1i)2

That is, the identifiability of parameter i is the sum of the squared ith components of all
eigenvectors spanning the calibration solution space. This is also equal to the square of the
magnitude of the parameter unit vector after projection of that unit vector onto the solution
subspace. Its highest possible value is 1.0; its lowest possible value is zero.

The “nonidentifiability” of parameter i is equal to 1.0 – di. It is equal to the square of the
magnitude of a unit parameter vector after projection of that unit vector onto the null

Alterations and Upgrades to PEST Utilities 106

subspace. A maximum value of 1.0 implies that the parameter is completely unidentifiable on
the basis of the current calibration dataset.

It should be noted that if the identifiability of a parameter is 1.0, this does not mean that it
can be estimated without any error. It only means that the null space contribution to the error
of its estimation is zero; only measurement noise contributes to its estimation error.

As is discussed below, IDENTPAR provides the user with the option of undertaking singular
value decomposition on either Q1/2X (as discussed above), or on XtQX. Both of these
processes yield an identical V matrix. Hence IDENTPAR outcomes computed on the basis of
either choice should yield the same (or almost the same) results. However in some
circumstances, decomposition of one of these is faster than that of the other.

3.27.2 Using IDENTPAR

IDENTPAR is run using the command:-
 INDENTPAR pestfilebase N vecfilebase matfile identfile [/s or /r]

where

pestfilebase is the filename base of a PEST control file;

N is the number of singular values defining the calibration solution space;

vecfilebase is the filename base to which eigencomponent sensitivity vectors are to be
written (supply this as “null” if these are not to be written);

matfile is the name of a matrix file to which the V1 matrix is to be written (supply this
as “null” if this is not to be written);

identfile is the name of a file to which parameter identifiability data is to be written
(supply this as “null” if this file is not to be written);

/s (optional) instructs IDENTPAR to undertake singular value decomposition on
XtQX, (the default), while

/r (optional) instructs IDENTPAR to undertake singular value decomposition on
Q1/2X.

IDENTPAR begins execution by reading the PEST control file corresponding to the user-
supplied filename base. It reads parameter data and observation weights from this file (and
any observation covariance matrices cited therein if these are employed for any observation
groups instead of weights). It then reads the Jacobian matrix corresponding to this PEST
control file. This file is assumed to have the same filename base as the PEST control file but
an extension of “.jco”; it is thus assumed that this file exists and has been computed either on
the basis of initial parameter values (set NOPTMAX to -1 or -2 to do this) or during a prior
parameter estimation process.

IDENTPAR next forms the Q1/2X matrix (or XtQX matrix depending on the user’s choice of
the /s or /r switch – where “s” stands for “square matrix” and “r” stands for “rectangular

Alterations and Upgrades to PEST Utilities 107

matrix”) and carries out singular value decomposition of the chosen matrix. On the basis of
N as supplied by the user on the IDENTPAR command line, it then records the following
information. Note however, that any of the following three tasks can be disabled by providing
a name of “null” for the pertinent filename base or filename in the IDENTPAR command
line.

First IDENTPAR writes a series of “vector files” containing the columns of V1. Suppose that
the user-supplied basename for these files is “base”. Then the files will be named base1.vec,
base2.vec…..baseN.vec. Each of these files can be used as a predictive sensitivity file by any
of the PREDVAR or PREDUNC utilities. In particular, a sequence of these files can be used
with PREDVAR1 in the manner discussed above for determining the value of N defining
separation of parameter space into solution and null spaces. (If this is to be done, then N must
obviously be supplied to IDENTPAR as larger than the anticipated value of the singular
value cutoff; once the cutoff point is determined, IDENTPAR can then be re-run using the
correct value of N to compute parameter identifiabilities.)

If matfile in the IDENTPAR command line is set to a value other than “null”, IDENTPAR
writes the columns of V1 to a single file in PEST matrix file format.

If identfile in the IDENTPAR command line is set to a value other than “null”, IDENTPAR
computes the identifiability of each parameter and records it to the nominated file. However
it also records the squares of the parameter components of all eigenvectors comprising the
solution space (i.e. values for (V1i)2 in the above equation – or in other words the squared
components of V1 vectors). All of these squared V1 vector components are recorded in
columns preceding the column in which total parameter identifiabilities are recorded. For a
particular parameter, the pertinent element in each of these columns can be considered to be
the square of the magnitude of the projection of a respective unit parameter vector onto the
pertinent eigenvector. On the other hand, the pertinent element in the “total identifiabililty”
column is the square of the magnitude of the projection of a respective unit parameter vector
onto the totality of this space as spanned by all solution space eigenvectors.

Interesting and informative plots can be produced by importing this file into a spreadsheet or
graphing program. For example the figure below shows part of a plot of total parameter
identifiability, with the contribution from each solution space eigenvector demarcated by
colour within each parameter-specific bar. It is apparent that some parameters (such as par3,
par8, par9 and par11 are very identifiable, whereas others (such as par13 to par17) are not.

Alterations and Upgrades to PEST Utilities 108

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

par1

par2

par3

par4

par5

par6

par7

par8

par9

par10

par11

par12

par13

par14

par15

par16

par17

par18

par19

par20

par21
Bar plot of identifiability of different parameters, coloured by contribution of different
solution space eigenvectors.

The following should be noted:-

1. Weights used in computation of Q1/2X (or XtQX) are those provided in the cited
PEST control file.

2. If PEST is run in regularisation mode, observations and prior information equations
belonging to regularisation groups are ignored.

3.28 SUPCALC

3.28.1 General

A common question, which is fundamental to using PEST’s powerful SVD-assist inversion
engine, is “how many super parameters should be employed in SVD-assisted calibration”?
This question cannot be answered exactly. However a number of points can be made in
consideration of this question. These include the following.

1. Moore and Doherty (2005) demonstrate that for any prediction made by a model, the
error variance of that prediction first falls and then rises as the number of super
parameters is increased. This corresponds to a decline in the null space contribution
to predictive error variance and a simultaneous rise in the solution space contribution
to predictive error variance with increasing number of super parameters. Predictive
error variance is generally minimized at an intervening number of super parameters,
this then defining the optimal number of super parameters to employ in calibrating a
model prior to the making of that prediction. Fortunately, there is normally a range of
singular values at which the error variance for most predictions is close to minimum,
so finding the exact minimum is not critical. Also, the optimal number of super
parameters is similar for most predictions, so that if a model is optimal for the
making of one prediction, it is normally close to optimal for the making of most other

Alterations and Upgrades to PEST Utilities 109

predictions.

2. The upper limit on the number of super parameters that should be used in SVD-
assisted calibration is set by that singular value whose ratio with the singular value of
greatest magnitude is about 10-7. (Singular values are normally arranged in order of
increasing-to-decreasing value, and are always positive.) At this point numerical
noise that accompanies finite-difference derivatives calculation is amplified to the
point where parameter estimates are corrupted by that noise. The singular value
number at which this occurs is normally far greater than that for which the error
variance of any prediction is minimized.

3. Where Tikhonov regularisation is employed in SVD-assisted parameter estimation
(with a target objective function that is set at an appropriately high level), more super
parameters can be employed than would otherwise be the case, for the imposition of
Tikhonov parameter constraints provides numerical stability and parameter
reasonableness in its own way, compensating for possible loss of these benefits
incurred by the use of too many super parameters.

4. It is often good to “err on the side of too many” super parameters rather than on the
side of too few, this providing a means of insurance against the propensity for model
nonlinearity to alter the boundary between the calibration solution and null spaces as
parameter values are varied through the calibration process. As mentioned above, the
deleterious effects of using too many super parameters can be circumvented by
inclusion of Tikhonov regularisation in the inversion process. (Note that an easy way
to add Tikhonov regularisation to an inverse problem is through the ADDREG1
utility.)

While conceptually appealing, computing the estimated error variance for a particular
prediction prior to choosing the number of super parameters to employ in SVD-assisted
parameter estimation is normally impractical. While an analysis of this kind can be
undertaken using the PREDVAR1 or PREDVAR1A utility, predictive sensitivities (on which
these utilities rely) are normally not available at the calibration stage of the model
construction process (and may be expensive to compute anyway). However all is not lost, for
a Jacobian matrix must have been computed prior to running SVDAPREP (this containing
sensitivities to parameters of model outputs corresponding to members of the calibration
dataset). If “predictions” can be formulated from sensitivities contained in this matrix, then
PREDVAR-type analysis can be employed for providing assistance to the user in choosing
the number of super parameters for use in the ensuing SVD-assisted calibration process.
SUPCALC (which stands for “SUPer parameter CALCulator”) was written to undertake such
analysis.

SUPCALC carries out singular value decomposition of either the Q1/2X or XtQX matrices in
order to obtain singular values and eigenvectors of XtQX. (Singular values of the latter
matrix are the square of the former, while the eigenvectors of these two matrices are the
same. Depending on the number of observations relative to the number of parameters
employed in a particular inversion process, it may be more efficient to conduct SVD on one
or the other of these matrices. SUPCALC’s outcomes should be the same, irrespective of
which matrix is decomposed.) Singular value decomposition yields a V matrix of orthogonal
unit eigenvectors spanning parameter space, and a diagonal S matrix of corresponding

Alterations and Upgrades to PEST Utilities 110

singular values (arranged from highest to lowest), according to the formula:-

 XtQX = VSVt

Once it has carried out singular value decomposition of XtQX, SUPCALC then examines
each of the eigenvectors corresponding to the columns of V in turn, starting with that
corresponding to the highest singular value. It “pretends” that this is a prediction, and
computes the fall in predictive error variance of this prediction (relative to its pre-calibration
level) that is incurred through its inclusion as a super parameter. It also computes the rise in
its error variance incurred through the fact that its estimation must take place on the basis of a
noisy calibration dataset. If the fall in its error variance incurred through including it in the
parameter estimation process (whereby it effectively moves from spanning part of the null
space to spanning part of the solution space) is greater than the rise in its error variance
incurred through the fact that its estimation is contaminated by measurement noise (the latter
being amplified by the inverse of its singular value), then that super parameter is worth
including in the parameter estimation process. However if the benefits of including it in the
solution space are more than offset by losses due to error variance growth incurred by noise
amplification (which becomes more and more likely as singular values fall), then the
eigenvector (i.e. super parameter) is not worth including in the inversion process; nor will
any super parameter corresponding to any higher singular value number, for the same reason.
(Note, however, that there are some exceptions to this rule – see below).

As described elsewhere in this document, computation of predictive error variance requires
that a covariance matrix of innate parameter variability be supplied (referred to as C(p) in
this manual), together with a covariance matrix of measurement noise (referred to as C(ε)).
When using SUPCALC, the former can be supplied through a parameter uncertainty file (see
the PREDVAR and PREDERR suite of programs for documentation of this file type).
Alternatively, SUPCALC can be told to compute the elements of C(p) itself on the basis of
parameter bounds listed in the PEST control file which is the subject of its current analyses.
SUPCALC computes the standard deviation of each parameter as one third of the distance
between its lower and upper bound (or the log of this if a parameter is log-transformed). It
also assumes that no correlation exists between parameters. (Note that when using this option
for computation of C(p) elements, the user may need to take more care than he/she normally
would in defining bounds in a PEST control file so that approximations employed in
calculation of elements of C(p) in this manner do not result in C(p) elements which are too
erroneous.)

For ease of use, SUPCALC assumes that the weighting strategy employed in a PEST control
file results in a weight matrix Q which is proportional to the inverse of C(ε), the constant of
proportionality being the “reference variance” σ2

r. That is, it is assumed that:-

 C(ε) = σ2
rQ

where Q is defined through weights supplied in the PEST control file. Where a covariance
matrix is provided for one or more observation groups in the PEST control file, the above
relationship is still assumed to hold. (Do not worry too much if you consider this assumption
to be violated in your PEST control file, for most “measurement noise” is in fact structural
noise for which we can never know C(ε) anyway. Approximations such as this are an
unavoidable part of modelling. Added to this is the fact that calculation of an optimal number

Alterations and Upgrades to PEST Utilities 111

of super parameters for use in SVD-assisted parameter estimation will only ever be
approximate anyway. This matters little, especially when Tikhonov regularisation is also
employed in the SVDA process as described above.) SUPCALC does not ask the user for the
reference variance. Rather it asks him/her what measurement objective function he/she
expects to achieve through the inversion process, and calculates the reference variance from
that.

SUPCALC’s estimate of the optimum number of super parameters to employ is not infallible.
The user should therefore monitor the ensuing SVD-assisted inversion process carefully,
looking for evidence that the number of super parameters may need to be altered. The
following may serve as a guide when inspecting the progress of an SVD-assisted PEST run
with this purpose in mind.

1. If matrix condition numbers are high (see the CND file), if the Marquardt lambda
rises rather than falls as the parameter estimation process progresses, and if the
measurement objective function “bounces around” rather than falls, then either the
number of super parameters needs to be increased or the Tikhonov target
measurement objective function needs to be raised (or both).

2. If condition numbers are low (a few hundred or less) and you feel that PEST could
have achieved a lower objective function than it did, the number of super parameters
needs to be raised.

Using SUPCALC

SUPCALC is run by typing its name at the screen prompt. Unlike many PEST utilities it does
not receive information through the command line. This is because the number of items of
information that it requires would make this strategy somewhat cumbersome to implement.
Hence it communicates with the user through a series of prompts, to which the user must
respond with appropriate responses.

SUPCALC’s first prompt is:-
 Enter name of PEST control file:

Supply the name of an existing PEST control file, for which a complementary Jacobian
matrix file already exists. the control file may or may not include Tikhonov regularisation. If
it does, all regularisation observations and prior information equations are ignored in
undertaking singular value decomposition of XtQX (or Q1/2X), and in calculating the number
of sustainable super parameters.

Next SUPCALC asks:-
 Enter expected value of measurement objective function:

If you have not as yet calibrated the model, this will be a difficult question to answer. If you
supply an answer which is too low, SUPCALC will probably inform you that you can employ
more super parameters than is actually sustainable by the data. If your answer is too high
then, based on SUPCALC’s underestimation of the sustainable size of the calibration solution
space, it may suggest a number of super parameters that is somewhat too low. It is better to
err on the side of optimism here and provide an objective function that may be too low. The

Alterations and Upgrades to PEST Utilities 112

use of Tikhonov regularisation in the SVDA process will provide numerical stability if this
becomes necessary.

SUPCALC next asks:-
 To conduct SVD on Q^(1/2)X - enter 1
 To conduct SVD on XtQX - enter 2
 Enter your choice:

SUPCALC output should not depend on your choice. If you have many observations,
selection of the first option may lead to shorter SUPCALC run time as there is then no need
for it to compute the XtQX matrix prior to undertaking singular value decomposition.

SUPCALC’s next prompt is:-
 Use uncertainty file or bounds to specify parameter variability? [u/b]:

If you choose the “b” option, SUPCALC computes the standard deviation of every parameter
as its range multiplied by 0.3. This factor is somewhat arbitrary. For a uniform probability
distribution the standard deviation is actually the range divided by √12 (which is equivalent
to multiplication by 0.288). For a normal distribution, if bounds signify a 95 percent
confidence interval, the standard deviation is the range divided by 4 (which is equivalent to
multiplication by 0.25). Furthermore, all parameters are assumed to be statistically
independent (and thus C(p) – the covariance matrix of innate parameter variability – is
assumed to be diagonal). The user should keep in mind the approximations that he/she
implicitly makes through selection of the “b” option.

Alternatively, if the “u” option is chosen, the name of a parameter uncertainty file must be
supplied in response to the following prompt:-
 Enter name of parameter uncertainty file:

The format of a parameter uncertainty file is described elsewhere in this manual. Using this
mechanism a C(p) matrix of arbitrary complexity can be supplied.

SUPCALC’s final prompt is:-
 Enter name for eigenvector gain/loss output file:

The format of this file will be discussed shortly.

Next, for each eigenvector represented in the V matrix (starting with that of highest
corresponding singular value) SUPCALC computes the loss of uncertainty accrued through
inclusion of this eigenvalue in the calibration solution space, and the gain in uncertainty
incurred through the effect of measurement noise in estimating the parameter combination
corresponding to this eigenvector once it is included in the solution space. It then sums the
two of these. If the summation is negative (indicating a net loss of estimability of the
parameter combination represented by the eigenvector), SUPCALC recommends that this
eigenvector should not be included in the calibration solution space. The recommended
minimum number of super parameters to include in the parameter estimation process is then
declared to be one less than the number of that singular value.

Ideally, once a rise in total uncertainty is encountered in this fashion as singular value
number is increased, the rise in total uncertainty will be even greater for eigenvectors
corresponding to subsequent singular values. However where the C(p) matrix is non-

Alterations and Upgrades to PEST Utilities 113

diagonal, and where its diagonal elements are very different from each other, it is not
impossible for losses in uncertainty to follow gains. Hence SUPCALC supplies its minimum
recommended number of super parameters as the singular value number corresponding to the
last eigenvector for which inclusion in the solution space results in a net diminution of
uncertainty.

As well as providing a value for the minimum recommended number of super parameters,
SUPCALC also provides a recommendation for the maximum number of super parameters to
employ. The maximum recommended number of super parameters corresponds to the last for
which the singular value is above 10-7 of the first singular value. Both the minimum and
maximum recommended number of super parameters are written to the screen by SUPCALC.

SUPCALC records the outcomes of calculations pertaining to all eigenvectors to its
“eigenvalue gain/loss output file”. An example of this output file follows.
Singular_value fall_in_null_space_term rise_in_soln_space_term total_fall
 99.70827 1.183301 9.5014028E-03 1.173799
 35.44050 1.154450 2.6731237E-02 1.127718
 12.07416 1.084832 7.8462467E-02 1.006369
 8.386447 1.079208 0.1129642 0.9662440
 3.985802 1.035739 0.2376858 0.7980535
 1.738295 0.9812030 0.5449986 0.4362043
 0.7795562 0.9190415 1.215266 -0.2962249
 0.2791684 0.8709510 3.393538 -2.522587
 9.8457999E-02 0.8429289 9.622056 -8.779127
 3.0268715E-02 0.8483459 31.29860 -30.45025

A SUPCALC output file.

The first column of the SUPCALC output file lists singular values of XtQX; these are listed
in order of highest to lowest singular value. The fall in uncertainty of estimation of each
eigenvector from its pre-calibration level (the latter uncertainty is determined by C(p) alone)
is provided in the second column. The rise in uncertainty accrued from the fact that data on
which basis this parameter combination is estimated is contaminated by measurement noise is
provided in the third column. The final column contains the fall in uncertainty minus the rise
in uncertainty; if this is negative, there is a net rise in uncertainty, from which it must be
concluded that the eigenvector (equivalent to a super parameter) is not worth including in the
parameter estimation process.

Model Predictive Error Analysis 114

4. Model Predictive Error Analysis
4.1 Concepts

4.1.1 General

As is explained in Moore and Doherty (2005a), the parameter error covariance matrix C(p-p)
of a calibrated model can be calculated using the formula:-

C(p -p) = (I - R)C(p)(I - R)t + GC(ε)Gt (4.1)

where:-

p represents “true” model parameters (which we never know);

p represents calibrated model parameters;

C(p) represents the covariance matrix of true parameters (often described by a
variogram);

C(ε) represent the covariance matrix of measurement noise (mostly assumed to
be a diagonal matrix);

R is the so-called “resolution matrix”; and

G is the matrix through which estimated parameter values (i.e. the elements of
p) are calculated from measurements, referred to herein as the “parameter
solution matrix”, or more simply as the “G matrix”.

Let s be a model prediction whose sensitivities to model parameters are encapsulated in the
vector y. For a linear model, the “true” value of a model prediction is given by:-

 s = ytp (4.2a)

while its model-calculated counterpart is:-

 s = ytp (4.2b)

Model predictive error (which is never known) is given by:-

 s – s = yt(p-p) = yt(I – R)p - ytGε (4.3)

while model predictive error variance (i.e. the “variance of potential wrongness” of a model
prediction) is given by:-

 σ2
s-s = yt(I – R)C(p)(I – R)ty + ytGC(ε)Gty (4.4)

Note that while derivation of these equations rests on an assumption of model linearity, they

Model Predictive Error Analysis 115

are nevertheless correct to a good approximation when applied to many non-linear models –
good enough, for example, to be used in the ranking of different data acquisition strategies in
terms of their comparative ability to reduce the potential wrongness of a key model
prediction. Furthermore, their application can be extended to nonlinear analysis without too
much difficulty; software to implement the nonlinear extension of this theory is presently
under construction.

4.1.2 Calculation of the R and G Matrices

Formulas for R and G depend on the method used by PEST to solve the inverse problem. For
an overdetermined system, for which the regularisation opportunities offered by truncated
SVD, SVD-assist and Tikhonov schemes are not required, the resolution matrix R is simply
I. However in many cases potentially unstable overdetermined problems are rescued from
numerical instability by use of a high Marquardt lambda (which is a de-facto Tikhonov
regularisation device). The Marquardt lambda is employed in the calculation of the R and G
matrices in the utility software described below. However it must be noted that this is not a
very good regularisation device, and in many cases can lead to loss of diagonal dominance of
the resolution matrix. Hence, whether using one of the specialist regularisation devices
offered by PEST, or not, attempts should be made to keep the Marquardt lambda low (or
even zero, as is suggested when using truncated SVD as a regularisation mechanism).

Formulas used for calculation of R and G are now provided. Variables used in these formulas
are as follows:-

X This is the Jacobian matrix, each row of which is the derivative of a particular
model outcome for which there is a complementary field measurement, with
respect to all adjustable parameters. Note that for SVD-assisted parameter
estimation, X refers to derivatives taken with respect to super parameters. Note
also that if a parameter is log transformed, pertinent elements of X pertain to
the log of that parameter.

Z The Z matrix is used only in formulas pertaining to SVD-assisted parameter
estimation. This contains derivatives of model outcomes with respect to base
parameters (or their logs). More is said on this below.

λ The PEST-calculated Marquardt lambda.

T The matrix of Tikhonov regularisation constraints. These constraints are
assumed to be of the form Tp = 0.

S The relative regularisation weight matrix (calculated from user-supplied
regularisation weights and/or user-supplied regularisation covariance
matrices).

β2
 The PEST-calculated regularisation weight factor.

h The set of observations on which the parameter estimation process is based. ε
featured in equations 4.1, 4.3 and 4.4 is the “noise” or “measurement error”
associated with these observations.

Model Predictive Error Analysis 116

Q The measurement weight matrix (calculated from user-supplied measurement
weights and user-supplied measurement covariance matrices).

V The matrix whose columns are orthogonal unit eigenvectors of XtQX as
calculated through singular value decomposition undertaken either during
every iteration of the parameter estimation process (when this is achieved
through truncated SVD), or at the beginning of the parameter estimation
process for determination of super parameters (if using SVD-assisted
parameter estimation).

E A diagonal matrix whose elements are the eigenvalues of XtQX (arranged in
decreasing order) determined through singular value decomposition.

V1 The first k columns of V, where k is the singular value truncation limit, or the
number of super parameters employed in SVD-assisted parameter estimation.

E1 A diagonal matrix whose elements are the first k eigenvalues of XtQX.

The utility software described shortly through which R and G can be calculated employs the
X matrix corresponding to the best parameter set achieved through the parameter estimation
process. This is stored in file case.jco which, like case.rsd (see below) and case.par (the
parameter value file) is updated by PEST whenever an improved parameter set is obtained.
The Z matrix, however, is not updated through the parameter estimation process. The utility
software documented below provides the user with the option of using the Z matrix
computed during the pre-SVD-assist base parameter sensitivity run, or of using a new Z
matrix computed using optimised parameters; if possible, it is better to use the latter.

Formulas through which R and G are calculated are now presented.

Overdetermined parameter estimation.

 R = (XtQX + λI)-1XtQX (4.5a)

 G = (XtQX + λI)-1XtQ (4.5b)

Tikhonov Regularisation

 R = (XtQX + β2TtST + λI)-1XtQX (4.6a)

 G = (XtQX + β2TtST + λI)-1XtQ (4.6b)

Singular Value Decomposition with Zero Marquardt Lambda

 R = V1V1
t (4.7a)

 G = V1E1
-1V1

tXtQ (4.7b)

Model Predictive Error Analysis 117

SVD-Assist

 R = V1(XtQX + β2TtST + λI)-1XtQZ (4.8a)

 G = V1(XtQX + β2TtST + λI)-1XtQ (4.8b)

The following should be noted.

1. PEST allows various combinations of different regularisation schemes to be used in
calculating optimised parameter values. For example a non-zero Marquardt lambda
can be used with truncated SVD, truncated SVD can be used as a matrix equation
solution scheme in SVD-assisted parameter estimation, SVD-assist can be
implemented with or without Tikhonov regularisation, etc. All of these (and other)
permutations can be accommodated in the software described below.

2. Where some parameters are log-transformed, the pertinent elements of the R and G
matrices calculated through the above equations pertain to the logs of these
parameters.

3. Where SVD-assisted parameter estimation is undertaken, the R and G matrices
pertain to base parameters (or their logs), as used by the model – not the super
parameters used by PEST in the SVD-assisted parameter estimation process.

4.1.3 Some Special Considerations

4.1.3.1 Regularisation Relationships

As mentioned above, where Tikhonov regularisation is employed it is assumed to be of the
type:-

 Tp = 0 (4.9)

In PEST, regularisation can be linear (supplied through prior information equations) or
nonlinear (supplied as observations). In both cases they are identified as regularisation
relationships through being assigned to an observation group whose name begins with
“regul”. However PEST also allows regularisation relationships of the following type to be
supplied:-

 Tp = k (4.10)

Calculation of the resolution matrix, as implemented in the utility software described below,
cannot accommodate relationships of the type expressed by equation 4.10. Fortunately, in
most cases, equation 4.10 is easily transformed to equation 4.9 by appropriate parameter re-
definition.

4.1.3.2 Initial Parameter Values

When using truncated SVD or SVD-assisted parameter estimation, integrity of the predictive
error variance analysis process requires that initial base parameter estimates (provided in the
“parameter data” section of the PEST control file) correspond to most likely parameters

Model Predictive Error Analysis 118

according to a user’s conception of parameter likelihood based on the current modelling
context and the characteristics of the modelled area.

4.1.3.3 The Z Matrix

As mentioned above, the Z matrix appearing in equation 4.8a provides the sensitivities of
model outputs for which there are corresponding field measurements to base parameters. In
SVD-assisted parameter estimation these can far outnumber super parameters, and
computation of the Z matrix can therefore be costly. Nevertheless, as described in the PEST
manual, this matrix must be calculated (based on initial parameter values) prior to the
undertaking of SVD-assisted parameter estimation, and so should be available for calculation
of the resolution matrix upon completion of the SVD-assisted parameter estimation process.
A better matrix to use in (4.8a) however is a Z matrix calculated on the basis of optimised
parameter values. Thus, after an SVD-assisted PEST run is complete, the PARREP utility can
be used to build a new base PEST control file using optimised base parameter values.
NOPTMAX can be set to “-1” in this new file so that when PEST is run it terminates
execution as soon as the Jacobian matrix is filled. The resulting “JCO” file will then hold the
Z matrix of sensitivities, calculated on the basis of optimized parameter values.

4.2 Alterations to PEST

4.2.1 The IRES Variable

In addition to its normal suite of output files, PEST now writes a “resolution data file” named
case.rsd where case is the filename base of the current PEST control file. If desired, writing
of this file can be enabled or suppressed using a new variable (named “IRES”) which should
be supplied following the IEIG variable on the tenth line of the PEST control file. If IRES is
omitted, its value is assumed to be “1” if PEST is run in regularisation mode and/or if PEST’s
SVD or SVD-assist functionality is activated, thus ensuring that file case.rsd is written.
However if IRES is set to zero, writing of case.rsd is suppressed. (It is automatically set to
zero if PEST is run in predictive analysis mode.) The figure below shows the structure of the
“control data” section of the PEST control file with the IRES variable included.
* control data
RSTFLE PESTMODE
NPAR NOBS NPARGP NPRIOR NOBSGP
NTPLFLE NINSFLE PRECIS DPOINT NUMCOM JACFILE MESSFILE
RLAMBDA1 RLAMFAC PHIRATSUF PHIREDLAM NUMLAM
RELPARMAX FACPARMAX FACORIG
PHIREDSWH
NOPTMAX PHIREDSTP NPHISTP NPHINORED RELPARSTP NRELPAR
ICOV ICOR IEIG IRES

Structure of the “control data” section of a PEST control file.

4.2.2 The “Resolution Data File”

The resolution data file case.rsd is a binary file whose contents cannot be read by the user.
Instead it is used by the RESPROC utility described below for calculation of the R and G
matrices of equations 4.5 to 4.8.

Model Predictive Error Analysis 119

Upon commencement of execution, PEST deletes an existing resolution data file having the
same filename base as that of the current PEST control file if such a file is found. This
eliminates the possibility that an old file will be confused for a new one if PEST did not run
long enough to produce this file, or if IRES was inadvertently set to zero.

PEST updates the resolution data file many times during the course of the parameter
estimation process such that data contained within it always pertains to the best parameters
achieved so far during that process; it is thus overwritten whenever the estimated parameter
set is improved.

4.3 RESPROC

4.3.1 General

RESPROC stands for “RESolution data postPROCessor”. It is run after completion of a
PEST run; normally PEST will have been run in regularisation mode, or with SVDMODE set
to 1, or with its SVD-assist functionality activated, or a combination of these. However
RESPROC can also provide useful results after a PEST run in which traditional parameter
estimation was implemented without the aid of any regularisation device (except the
Marquardt lambda). In all cases a “resolution data file” (named case.rsd where case is the
filename base of the PEST control file) must have been produced on that PEST run.

RESPROC’s task is to write a file containing both the R and G matrices pertaining to the
previous PEST run, which can then be used by other utility programs for calculation of
parameter and predictive error variances. In order to save disk space this, too, is a binary file;
however the R and G matrices can be rewritten in ASCII form if desired using the RESWRIT
utility described below.

4.3.2 What RESPROC Does

RESPROC reads the following files, all associated with an existing PEST dataset
characterised by the case filename base:-

1. the PEST control file (named case.pst);

2. the resolution data file (named case.rsd);

3. the Jacobian matrix file (named case.jco).

(Note that at any stage of the parameter estimation process the contents of the latter two files
pertain to the best parameters achieved at that stage of the process.)

If the previous PEST run implemented SVD-assisted parameter estimation, the following
files are also read by RESPROC:-

1. the base pest control file in which base parameters are defined (named bcase.pst);

2. the base Jacobian matrix file in which base parameter sensitivities are recorded
(named bcase.jco);

Model Predictive Error Analysis 120

3. optionally, an updated JCO file in which base sensitivities are recorded for optimised
base parameter values.

Where many parameters and observations are involved in the parameter estimation process,
RESPROC may take a while to run, for the matrices that must be manipulated in the
formulation of R and G can be large. Fortunately, it need only be run once, for these
matrices, once calculated, can then be used for computation of the error variance of a variety
of model predictions.

As presently programmed there is a slight restriction on the use of RESPROC, which it is
hoped will not limit its usefulness too much. RESPROC insists that no covariance matrix in
lieu of observation weights be used for observation groups pertaining to measurements;
however it will accept the use of a covariance matrix for an observation group containing
regularisation information.

4.3.3 Running RESPROC

RESPROC is run using the command:-
resproc case outfile

where :-

case is the filename base of the PEST control file pertaining to a completed PEST
run, and

outfile is the name of the RESPROC output file containing the R and G
matrices (referred to herein as a “binary resolution matrix file”).

When supplying case on the RESPROC command line, the “.pst” extension can be omitted; if
so, RESPROC will supply this extension automatically. outfile, however, must have its
extension supplied; if it is omitted, RESPROC will assume that this file has no extension.

As it executes, RESPROC writes its current activities to the screen. As discussed above,
these activities involve manipulation of possibly large matrices. They also involves matrix
inversion and possibly singular value decomposition (which will need to be undertaken twice
if the previous parameter estimation was SVD-assisted and if truncated SVD was employed
for estimation of super parameters). Hence, as mentioned above, execution of RESPROC
may take a while. When it has completed calculation of R and G, RESPROC stores them in
its output binary resolution matrix file, records this fact to the screen, and ceases execution.

 4.3.4 SVD-Assisted Parameter Estimation

Where the previous PEST run implemented SVD-assisted parameter estimation, RESPROC
prompts the user for some extra information as follows:-
Select option for obtaining base parameter sensitivities:-
 enter "1" to use those in base Jacobian matrix file bcase.jco
 enter "2" to read from another JCO file
Enter your choice:

If your response to the above prompt is “2”, RESPROC asks for the name of a JCO file. This
file must cite the same parameters and observations (including prior information) as the base

Model Predictive Error Analysis 121

parameter PEST control file used in setup of the SVD-assisted run. This will be automatically
ensured if the following steps are taken for preparation and implementation of SVD-assisted
parameter estimation, and subsequent postprocessing.

1. A PEST case is set up involving base parameters, and optional Tikhonov
regularisation constraints. Let us suppose that the PEST control file for this case is
named bcase.pst.

2. Base parameter sensitivities are calculated for this base case. These will be stored in
the base Jacobian matrix file bcase.jco.

3. A super parameter dataset is constructed using SVDAPREP; let the new PEST control
file be named case.pst.

4. PEST is run; after this run is complete, optimised base parameters reside in file
bcase.bpa.

5. PARREP is run to build a new base PEST control file, bcase1.pst in which optimized
parameter values are employed as parameter initial values. The command is:-
parrep bcase.bpa bcase.pst bcase1.pst

6. NOPTMAX is set to “-1” in bcase1.pst. Thus it calculates the Jacobian matrix (the Z
matrix of equation 4.8a), and then terminates execution. This matrix is stored in file
bcase1.jco.

7. When RESPROC is run, a “2” is supplied in response to the above prompt. bcase1.jco
is then supplied as the name of the alternative base Jacobian matrix file.

Limited experience to date suggests that use of a Z matrix calculated on the basis of
optimized base parameter values results in a better resolution matrix than use of the original
Z matrix contained in file bcase.jco which was used for definition of super parameters.

4.4 RESWRIT

4.4.1 General

The R and G matrices written by RESPROC are not readable by the user. If it is desired that
these matrices be subject to inspection and/or plotting, they should be converted to ASCII
format. RESWRIT accomplishes this task.

4.4.2 Running RESWRIT

RESWRIT is run using the command:-
 reswrit resprocfile matfile1 matfile2

where

resprocfile is the name of an unformatted RESPROC output file;

matfile1 is a “matrix file” to which the resolution matrix will be written; and

Model Predictive Error Analysis 122

matfile2 is a “matrix file” to which the G matrix will be written.

Note that an extension should be provided for each of these files, for RESWRIT employs no
default extensions.

4.4.3 Format of Matrix Files

A matrix file holding a matrix with three rows and four columns is illustrated below.
 3 4 2
3.4423 23.323 2.3232 1.3232
5.4231 3.3124 4.4331 3.4442
7.4233 5.4432 7.5362 8.4232
* row names
apar1
apar2
apar3
* column names
aobs1
aobs2
aobs3
aobs4

An example of a matrix file.

The first line of a matrix file contains 3 integers. The first two indicate the number of rows
and number of columns in the following matrix. The next integer (named ICODE) is a code,
the role of which will be discussed shortly.

Following the header line is the matrix itself, in which entries are space-separated and
wrapped to the next line if appropriate. Because the elements are read using FORTRAN list-
directed input, other options are available as well for representation of the matrix. Thus, for
example, the line:-
 5*3.0, 3*2.4, 2*4.4

is equivalent to:-
 3.0 3.0 3.0 3.0 3.0 2.4 2.4 2.4 4.4 4.4

Then, if ICODE is set to 2, follows the string “* row names”. Following that are NROW
names (of 20 characters or less in length), containing the names associated with rows of the
matrix. NCOL column names follow in a similar format.

For a square matrix ICODE can be set to “1”. This indicates that rows and columns are
associated with the same names (as is the case for a resolution matrix). In this case the string
“* row and column names” follows the matrix, and the pertinent names are listed on the
NROW lines following that.

A special ICODE value is reserved for diagonal matrices. If NCOL is equal to NROW, then
ICODE may be set to “-1”. In this case only the diagonal elements of the matrix need to be
presented following the integer header line; these should be listed one to a line as illustrated
in the following figure. Following that should be the string “* row and column names” (for if
ICODE is set to “-1” it is assumed that these are the same), followed by the names
themselves.

Model Predictive Error Analysis 123
5 5 -1
4.5
4.5
2.4
7.53
5.32
* row and column names
par1
par2
par3
par4
par5

A matrix file containing a diagonal matrix.

4.5 PARAMERR

4.5.1 General

PARAMERR’s task is to construct the “parameter error covariance matrix” C(p-p) of
equation (4.1). It stores the two terms on the right side of equation 4.1 in separate files. This
saves the user from having to re-compute both of these terms if an input required by only one
of them (for example C(p) or C(ε)) is altered. It also allows the user to quantify the individual
contribution to overall predictive error variance made by “uncaptured system heterogeneity”
on the one hand (the first term), and measurement error on the other (the second term). The
first diminishes as the level of fit between model outputs and field measurements increases,
while the second term grows as better model-to-measurement fits are obtained; as Moore and
Doherty (2005a) point out, the optimal level of model-to-measurement misfit for any
particular parameter estimation problem is that which minimises the variance of one or a
number of key model predictions.

4.5.2 Uncertainty Files

4.5.2.1 Concepts

Calculation of C(p-p) requires that the user provide the covariance matrices C(p) and C(ε).
These must each be specified through an “uncertainty file”, an example of which is shown
below.
An example of an uncertainty file

START STANDARD_DEVIATION
 std_multiplier 3.0
 ro9 1.0
 ro10 1.0
 ro4 1.0
END STANDARD_DEVIATION

START COVARIANCE_MATRIX
 file "mat.dat"
 variance_multiplier 1e-2
END COVARIANCE_MATRIX

START PEST_CONTROL_FILE
 file "te st.pst"
 variance_multiplier 2.0e2
END PEST_CONTROL_FILE

Model Predictive Error Analysis 124

Example of an uncertainty file.

The purpose of an uncertainty file is to allow the user a number of different options for
characterising the uncertainty of a group of entities comprising a vector quantity (for example
p and ε). Three such options are presently available, viz. a list of individual entity standard
deviations, a covariance file, and entity weights listed in the “observation data” section of a
PEST control file. A single such option can be used to specify the entirety of a covariance
matrix, or different mechanisms can be used to characterise different parts of the total
covariance matrix.

An uncertainty file is subdivided into blocks. Each such block implements one of the
mechanisms of uncertainty characterisation described above. An uncertainty file can have as
many blocks as desired. However the following rules must be observed.

1. Any one uncertainty file is used to characterize the uncertainty of either parameters or
observations, but not both.

2. Parameters and observations cited in an uncertainty file, and the files cited therein, are
matched by name to those featured in the current parameter estimation problem.

3. The uncertainty of an individual element of the overall p or ε vector can be
characterised in only one way. Thus any particular element cannot be cited in the
“observation data” section of a PEST control file cited in a particular uncertainty file
if it is also cited in a STANDARD_DEVIATION block of that uncertainty file, or in a
covariance matrix file cited in the COVARIANCE_MATRIX block of that same
uncertainty file.

4. An uncertainty file, and files cited therein, can cite the names of parameters and
observations that are not featured in the current parameter estimation problem; data
pertaining to these surplus parameters and observations are simply ignored. However
it must not omit any of the parameters or observations pertaining to the current
parameter estimation problem.

5. If a parameter is log-transformed in the current parameter estimation problem, then
specifications of variance, covariance or standard deviation provided in the
uncertainty file must pertain to the log of the parameter. PARAMERR provides no
checks for this, for it has no way of knowing the transformation status of a particular
parameter; it is thus the user’s responsibility to ensure that this protocol is observed.

6. An uncertainty file used for the characterisation of C(p) cannot include a
PEST_CONTROL_FILE block, for PARAMERR reads only the “observation data”
section of a cited PEST control file.

7. As presently programmed, an uncertainty file used for characterisation of C(ε) must
not include a COVARIANCE_MATRIX block, for PARAMERR assumes that
measurement noise is uncorrelated.

Each block of an uncertainty file must begin with a START line and finish with an END line
as illustrated in the above figure; in both cases the type of block must be correctly

Model Predictive Error Analysis 125

characterised following the START and END designators. Within each block, data entry
must follow the keyword protocol concept. Thus each line must comprise a keyword,
followed by the value (numerical or text) associated with that keyword. Filenames must be
surrounded by quotes if they contain spaces. With one exception (the std_multiplier keyword
in the STANDARD_DEVIATION block), keywords within a block can be supplied in any
order; some can be omitted if desired. Keywords and block names are case insensitive.

Blank lines can appear anywhere within an uncertainty file. So too can comment lines; these
are recognised through the fact that their first character is “#”.

Each of the blocks appearing in an uncertainty file is now discussed in detail.

4.6.2.2 The STANDARD_DEVIATION Block

In a STANDARD_DEVIATION block, entity names (individual parameters or observations)
are listed one to a line followed by their standard deviations. As stated above, if a parameter
is log-transformed in the parameter estimation process, then this standard deviation should
pertain to the log (to base 10) of the parameter. Parameters/observations can be supplied in
any order. Optionally a std_multiplier keyword can be supplied in the
STANDARD_DEVIATION block; if so, it must be the first item in the block. All standard
deviations supplied on ensuing lines are multiplied by this factor (the default value of which
is 1.0).

Parameters/observations cited in a STANDARD_DEVIATION block are assumed to be
uncorrelated with other parameters/observations. Thus off-diagonal elements of C(p) or C(ε)
corresponding to these items are zero. Pertinent diagonal elements of C(p) and C(ε) are
calculated by squaring the standard deviation (after multiplication by the std_multiplier).

4.5.2.3 The PEST_CONTROL_FILE Block

Only two keywords are permitted in this block, these being the file and variance_multiplier
keywords; the latter is optional, the default value being 1.0.

The name of a PEST control file should follow the file keyword. PARAMERR reads the
“observation data” section of this file. For any particular observation cited in this section that
is also featured in the current parameter estimation problem, PARAMERR calculates its
variance from the weight w cited in the PEST control file as (1/w)2. This variance is then
multiplied by the variance_multiplier before insertion into the appropriate diagonal element
of C(ε). Corresponding off-diagonal elements of C(ε) are assumed to be zero.

4.5.2.3 The COVARIANCE_MATRIX Block

Where one or more covariance matrices are supplied for subgroups of p which show intra-
parameter correlation, these matrices are included in the larger C(p) matrix calculated by
PARAMERR (together with variances calculated from parameter standard deviations
supplied in one or more STANDARD_DEVIATION blocks). Optionally, all elements of
such a user-supplied covariance matrix can be multiplied by a factor, this factor (for which
the default value is 1.0) being supplied following the variance_multiplier keyword.

Model Predictive Error Analysis 126

The format of a covariance matrix file must be identical to that described in Section 4.4.3. In
particular, the first line of this file must include 3 integers, the first two of which (specifying
the number of rows and columns in the matrix) must be identical. The third integer must be
“1” or “-1”. The matrix itself must follow this integer header line; elements within this matrix
must be space-delimited; rows can be wrapped onto consecutive lines. This matrix must be
followed by the string “row and column names”. Following this must be the names of the
parameters to which the matrix pertains.

The following should be noted.

1. A covariance matrix must be positive definite.

2. The order of rows and columns of the covariance matrix (which corresponds to the
order of parameters represented by this matrix as listed below the “row and column
names” header) is arbitrary. PARAMERR will re-arrange these rows so that they
correspond to the order of adjustable parameters supplied in the PEST control file on
which the current parameter estimation problem is based.

3. A user-supplied covariance matrix need not contain all of the parameters pertaining to
the current parameter estimation problem, for it need contain only a subset of these.
(Other parameters can be cited in other covariance matrix files and/or one or more
STANDARD_DEVIATION blocks supplied in the same uncertainty file.) However it
must not contain any parameters which do NOT pertain to the current parameter
estimation problem (unless none of its parameters pertain to the current parameter
estimation problem, in which case the matrix is ignored).

4. If a parameter is log-transformed, the variance and covariances pertaining to that
parameter as supplied in a covariance matrix file must in fact pertain to the log of that
parameter.

4.5.3 Using PARAMERR

PARAMERR receives information from keyboard input supplied by the user in response to a
set of prompts. (It requires too much information to be supplied through command-line
arguments.)

Upon commencement of execution, PARAMERR prompts:-
 Enter name of RESPROC output file:

in response to which the name of the RESPROC-generated unformatted resolution matrix file
should be supplied (this file also contains the G matrix). Next it asks:-
 Options are as follows:-
 to compute (I-R)C(p)(I-R)' - enter 1
 to compute GC(e)G' - enter 2
 to compute both - enter 3
 Enter your choice:.

As mentioned above, there will be occasions when only one of the two terms on the right side
of equation 4.1 will require computation. However if both are required, enter 3. If this is
done, PARAMERR’s next prompts will be:-
 Enter name of parameter uncertainty file:

Model Predictive Error Analysis 127
 Enter name for covariance matrix output file:

 Enter name of observation uncertainty file:
 Enter name for covariance matrix output file:

As discussed above, the uncertainty file in each case must be prepared by the user. The
covariance matrix output file written by PARAMERR in each case is the respective term of
equation (4.1), that is (I - R)C(p)(I - R)t in the first case and GC(ε)Gt in the second case.
These are written in standard matrix file format, following the protocol discussed in Section
4.4.3. Each of these matrices is square with dimensions n × n where n is the number of
adjustable parameters pertaining to the current parameter estimation problem.

4.6 PREDERR

4.6.1 General

PREDERR is similar in many respects to PARAMERR. Like PARAMERR it reads a
parameter uncertainty file and an observation uncertainty file; see documentation of
PARAMERR for the format of these files. However rather than calculating and storing the
two components of C(p–p), it directly calculates the error variance of a user-specified
prediction. Thus calculation of C(p–p) is bypassed. This can result in enormous savings in
calculation of predictive error variance. Thus unless calculation of C(p-p) is specifically
required for a certain application, use of PREDERR is preferred over use of PARAMERR
followed by JROW2VEC and MATQUAD (see the next section) for the calculation of the
error variance of a certain prediction.

4.6.2 Using PREDERR

Many of PREDERR’s prompts are similar to those of PARAMERR. However, unlike
PARAMERR (but like JROW2MAT and JROW2VEC), PREDERR requires the name of a
Jacobian matrix file, as well as the name of a particular observation for which parameter
sensitivities are recorded in this file. This “observation” is treated as a “prediction” for the
purpose of error variance calculation as undertaken by PREDERR using equation 4.4. That
is, the parameter sensitivities extracted from the user-specified row of the Jacobian matrix
constitute the y vector of this equation.

PREDERR’s screen display, including its prompts, are as follows; typical responses are
shown highlighted.

Enter name of RESPROC output file: modela.rpo

Enter name of parameter uncertainty file: param1.unc
Enter name of observation uncertainty file: observ1.unc

Enter name of Jacobian matrix file: model1.jco
Enter name of prediction featured in this file: ptime

- reading RESPROC output file modela.rpo...
- file modela.rpo read ok.

- reading Jacobian matrix file model1.jco...
- Jacobian matrix file model1.jco read ok.

Model Predictive Error Analysis 128
- reading parameter uncertainty data...
- parameter uncertainty data read ok.

- calculating I-R contribution to predictive error variance...
- I-R term calculated ok.

- reading observation uncertainty data...
- reading PEST control file temp.pst...
- file temp.pst read ok.
- observation uncertainty data read ok.

- calculating G contribution to predictive error variance...
- G term calculated ok.

The following should be noted.

1. The Jacobian matrix file will have been written by PEST. It is an unformatted file
with the name case.jco where case is the filename base of the corresponding PEST
control file.

2. The cited Jacobian matrix file must contain an observation named as the “prediction”
in the pertinent PREDERR prompt. Many more observations than this can be cited in
the Jacobian matrix file; all others are ignored.

3. Each parameter cited in the RESPROC output file must also be cited in the Jacobian
file. If more parameters than this are cited in the Jacobian matrix file, they are
ignored. If fewer parameters are cited, PREDERR ceases execution with an
appropriate error message. Parameters need not be arranged in the same order in the
Jacobian matrix file as they are in the RESPROC output file (and hence in the PEST
control file on which the RESPROC output file is based).

PREDERR quickly calculates the contribution to predictive error variance made by both
terms of equation 4.4 (which it refers to as the “I-R term” and the “G term”). It writes the
outcomes of its calculations to the screen, an example of which is depicted below.

*********** COMPONENTS OF PREDICTIVE ERROR VARIANCE ***********

 I-R component of predictive error variance = 2881711.
 G component of predictive error variance = 5342.439
 Total predictive error variance = 2887054.
 Predictive error standard deviation = 1699.133

 **

4.7 PREDERR1
Operation of PREDERR1 is very similar to that of PREDERR, the only difference being that
PREDERR1 does not prompt for the name of a RESPROC output file. Instead it prompts
individually for the names of files which hold the resolution matrix on the one hand and the
G matrix on the other. These files must be in matrix file format as described in the following
section.

Note the following.

Model Predictive Error Analysis 129

1. Row names provide in the resolution and G matrix files must be identical to each
other.

2. The resolution matrix must have identical row and column names. These names must
be the same as parameter names involved in the current predictive error variance
analysis problem.

3. Column names cited in the G matrix must pertain to observations employed in the
current predictive error variance analysis problem.

4.8 PREDERR2
PREDERR2 is a modification of PREDERR1. Unlike PREDERR1, which calculates error
variance for only one prediction whose sensitivities are contained within a Jacobian matrix
file, PREDERR2 can calculate variances for multipliple predictions featured in this file. Like
PREDERR1 it prompts for a resolultion matrix file, a G matrix file, a parameter uncertainty
file, an observation uncertainty file and a Jacobian matrix file. However it also prompts for
the name of a “prediction list file”. This must contain a list of predictions, one to a line, for
which error variances are to be calculated; each such prediction should be featured in the
Jacobian matrix file.

PREDERR2 also prompts for the name of a “prediction error variance output file”. Part of
this file is featured below.

Prediction Variance_1 Variance_2 Total Standard_Dev
 ar1 0.4282991 4.7418460E-02 0.4757175 0.6897228
 ar2 0.3441107 6.0151659E-02 0.4042623 0.6358163
 ar3 0.2486108 8.1392663E-02 0.3300034 0.5744593
 ar4 0.1724225 0.1177954 0.2902179 0.5387187
 ar5 0.1363500 0.1767298 0.3130798 0.5595354
 ar6 0.1115423 0.2602005 0.3717428 0.6097071

Part of a PREDERR2 output file.

The “variance_1” and “variance_2” terms are the I-R and “G” terms of the predictive error
variance equation. Thus these terms provide the contributions to predictive error variance
arising from “uncaptured heterogeneity” and measurement noise respectively. The “total” is
the sum of these and the “standard_dev” is the square root of that.

4.9 PREDERR3
PREDERR3 is almost identical to PREDERR2. However instead of reading the resolution
and “G” matrices from separte files, it reads both of these from an unformatted RESPROC
output file.

4.10 PREDVAR1

4.10.1 General

PREDVAR1 analyses “notional predictive error variance” without requiring that a model be

Model Predictive Error Analysis 130

actually calibrated to do so. Equation 4.4 is employed on the assumption that the notional
calibration exercise is completed using singular value decomposition (SVD).

PREDVAR1 can be extremely useful in achieving at least the following objectives.

1. Before a model is even calibrated, a rapid assessment can be made of the reduction in
predictive variance that can be achieved through the calibration process, given the
number and type of measurements comprising the calibration dataset, the noise C(ε)
associated with these measurements, and the inherent variability C(p) of model
parameters that accrues from environmental system complexity and/or heterogeneity.
By comparing post-calibration predictive variance with pre-calibration predictive
variance calculated as

s = ytC(p)y (4.11)

 a rapid assessment can be made of the worth of undertaking a possibly expensive and
time-consuming calibration exercise before that exercise is actually embarked upon.

2. Because the calibration exercise simulated by PREDVAR1 is notional rather than
actual, the reduction in uncertainty achieved through including one or a number of
hypothetical extra observations in the calibration dataset can be rapidly assessed. This
can form a sound scientific basis of optimisation of data acquisition, based on the
premise that the worth of acquiring a certain type of data over that of acquiring
another type of data is greater if its acquisition results in a greater reduction in
predictive error variance. Furthermore, because equation 4.4 is based on a full
characterization of uncertainty (including the effects of system complexity which is
beyond the ability of the calibration process to capture), this method of assessing the
worth of gathering extra data is superior to similar statistics based on over-determined
estimation of parameters pertaining to over-simplified models which, under most
circumstances of environmental model calibration, are almost meaningless.

3. Similarly, by varying the terms of C(p) in accordance with an improvement in direct
knowledge of system properties that may be gained through direct system
measurement, an assessment of the worth of these measurements in reducing the
uncertainties of one or more predictions can be made. Various data acquisition
strategies of this type can then be ranked, and/or these strategies can be compared
with the benefits of acquiring extra information on system states (see the above point)
to use in a future calibration exercise.

4. By setting certain components, or groups of components, of C(p) to zero and by
employing equation 4.4 and/or 4.11 in conjunction with this revised C(p), the
contribution to the uncertainty of a specific model prediction made by different
parameter types can be estimated. Where knowledge of the values of those parameter
types cannot be enhanced by direct measurement, this may allow the user to
determine the “irreducible level of uncertainty” associated with key model
predictions.

5. By re-calculating error variance using equation 4.4 for different numbers of singular
values at which the SVD process is truncated, the minimum in the curve of number of

Model Predictive Error Analysis 131

singular values versus model predictive error variance can be ascertained; see Moore
and Doherty (2005a). This can serve as a useful guide to the number of super
parameters to employ in SVD-assisted parameter estimation.

As mentioned above, PREDVAR1 calculates predictive error variance on the assumption that
regularisation of the notional calibration exercise is implemented using truncated SVD. Thus
equations 4.7a and 4.7b are employed in the calculation of R and G. It is further assumed that
the user supplies a set of measurement weights for this calibration exercise that satisfies the
equation:-

 C(ε) = σr
2Q (4.12)

where Q is the weight matrix. Use of this relationship further simplifies (and expedites)
calculation of σ2

s-s using equation 4.4. Note that one or more measurement covariance
matrices can be used instead of weights as discussed below.

4.10.2 Using PREDVAR1

PREDVAR1 requires too many inputs for these to be supplied through its command line. So
it prompts the user for information, which must be supplied in response to these prompts.
PREDVAR1 commences execution with the prompt:-
 Enter name of PEST control file:

Supply the name of a PEST control file. It is assumed that a complementary Jacobian matrix
file (“JCO file”) is available for this PEST control file. Thus it is assumed that PEST has
been run for one iteration (or that NOPTMAX has been set to -1 on its previous run) so that
derivatives have been calculated for all model outputs with respect to all adjustable model
parameters. (Predictive sensitivities may also have been calculated – see below).

Next PREDVAR1 prompts:
 Enter observation reference variance:

PREDVAR1 computes C(ε) of equation 4.4 by assuming that the inverse of each weight
contained in the PEST control file is proportional to the standard deviation of the observation
to which it is assigned. It is assumed that the proportionality constant is the same for all
weights, and is equal to the square root of the reference variance depicted in equation 4.12.
That is, the squares of weights are assumed to comprise the inverse of the diagonal of the Q
matrix of equation 4.12. If desired the PEST control file can feature one of more observation
covariance matrices as well, these being used instead of weights for one or more observation
groups. The same reference variance must apply to these as well; that is, the elements of
these matrices are multiplied by σr

2 of equation 4.12 in calculating the appropriate submatrix
of C(ε).

PREDVAR1 next prompts for the name of a parameter uncertainty file. The prompt is:-
 Enter name of parameter uncertainty file:

The contents of this file define C(p); see documentation of program PARAMERR for details.
The uncertainties associated with elements, or groups of elements, of the parameter vector p
can be defined in the parameter uncertainty file using standard deviations or covariance
submatrices (possibly based on geostatistical characterizations of the subsurface). The

Model Predictive Error Analysis 132

following should be noted.

• If a parameter is log-transformed in the PEST control file, the elements of C(p)
associated with that parameter must pertain to the log of that parameter.

• As is the protocol for a parameter uncertainty file, this file can contain information
pertaining to more parameters than those which are demarcated as adjustable in the
PEST control file. Unused parameters are simply ignored.

• If one parameter is tied to another parameter in the PEST control file, then the parent
parameter is in fact a “composite parameter”. Its statistical properties as supplied in
C(p) should reflect this.

Next PREDVAR1 prompts:-
 Enter name of predictive sensitivity matrix file:

This file must contain a single column matrix (in matrix file format as documented in Section
4.4.3) which contains the sensitivity of a prediction of interest to every adjustable parameter
cited in the PEST control file. That is, it must contain the vector y of equation 4.4. The
following should be noted.

• If a parameter is log transformed in the PEST control file, then parameter sensitivities
contained in y must pertain to the log of the parameter.

• If a parameter is tied to another parameter in the PEST control file, then the
sensitivity with respect to the parent parameter as contained in y must reflect the fact
that it is parent to another parameter.

• Parameters do not need to be arranged in the same order in the predictive sensitivity
matrix file as they are in the PEST control file. PREDVAR1 links parameters by
name, and re-arranges them if necessary. Similarly, if the predictive sensitivity matrix
file cites more parameters than are adjustable in the PEST control file, the excess
parameters are simply ignored.

The easiest way to make a predictive sensitivity matrix file is as follows.

• When PEST is run in order to calculate observation sensitivities, design the model
to run in such a way that it makes one or more predictions, as well as calculating
outputs that correspond to historical observations listed in the PEST control file
for calibration purposes. This may require that the model be run not once, but
twice, based on different inputs, through a batch file serving as “the model” as
seen by PEST.

• List these predictions in the PEST control file as additional “observations”.
However give them a weight of zero.

• If this is done, the JCO file produced as an outcome of the PEST run will contain
the sensitivities of these predictions to all adjustable parameters. A predictive
sensitivity file can be constructed for each such prediction using the JROW2VEC
utility discussed in the next section.

Model Predictive Error Analysis 133

Next PREDVAR1 issues a series of prompts as follows:-
 Enter no. of singular values before truncation [<Enter> if no more]:

Enter a number between (and including) zero and the number of adjustable parameters
employed in the simulation. Be aware, however, that if there are more adjustable parameters
than observations, the number of non-zero singular values of XtQX will be only as large as
the number of observations. So do not enter a number higher than this. PREDVAR1 will
inform you if this number is too high and thus results in a zero singular value; in fact it will
cease execution with an error message under these circumstances. So when entering singular
values in response to the above series of prompts it is best to supply them in increasing order.

If truncation takes place at zero singular values, this is equivalent to not calibrating the model
at all. Hence predictive error variance is calculated using equation 4.11. As the number of
singular values prior to truncation increases, the first term of equation 4.4 will normally fall.
In fact it will fall monotonically if C(p) is equal to σ2

pI where I is the identity matrix and σ2
p

is an appropriate “parameter reference variance”. In other cases, however, there may be
interruptions in the fall (and sometimes local rises) with increasing singular value, indicating
that calibration can actually increase the error variance of a prediction if C(p) contains
variances of very different magnitude, and/or indicates a high level of parameter correlation.
The former problem can be rectified by appropriate parameter scaling; this should be done as
a matter of course when calibrating a model in order to prevent this problem.

The second term of equation 4.4 should rise as the number of singular values prior to
truncation increases. At some number of singular values there is normally an optimum, where
predictive error variance is least.

PREDVAR1 finally prompts for the names of its two output files:-
 Enter name for predictive error variance output file:
 Enter name for SVD file [<Enter> to read an old one]:

The first file lists the contributions to predictive variance made by the first and second terms
of equation 4.4 for each requested singular value. It also lists the total predictive error
variance, together with the predictive standard deviation (square root of this). If singular
values are arranged in increasing order, this file can serve as an input to a plotting/graphing
program. The second file is similar to that produced by PEST when implementing singular
value decomposition as an inversion device. It lists singular values and respective
eigenvalues of XtQX, calculated as an outcome of the SVD process. If the option it taken to
read an old file, PREDVAR1 prompts for the name of this file. For large problems involving
many parameters, making use of SVD data generated on a previous PREDVAR1 run can
save a considerable amount of time. It is important to note, however, that the results of a
previous singular value decomposition of XtQX are only appropriate for a current
PREDVAR1 run if the PEST control file (and any covariance matrices cited therein) is the
same for this run as it was for the run on which the SVD file was originally saved; however
parameter uncertainty data can change between these two runs. Note also, that there my be
tiny differences between variances calculated on the basis of stored SVD data and that
calculated internally because of the slight loss of precision incurred through ASCII file
storage.

It is also important to note that if the PEST control file read by PREDVAR1 instructs PEST
to run in regularisation mode, regularisation observations and prior information equations are

Model Predictive Error Analysis 134

ignored in formulating X and hence in computation of predictive error variance. Thus it is
assumed that the only type or regularisation undertaken is that pertaining to truncated SVD,
with the truncation limit set at those singular values supplied by the user.

4.11 PREDVAR2

4.11.1 General

Operation of PREDVAR2 is based on the same principals as that of PREDVAR1. However
instead of calculating the dependence of predictive error variance on the number of singular
values employed in the truncated SVD process through which R and G of equation 4.4 are
evaluated, it allows calculation of predictive error variance based on a sequence of different
parameter uncertainty files, all for the same singular value truncation limit. This can be very
useful for at least the following purposes.

1. If, in each of these files, a particular parameter, or parameter type, is assigned zero
variance (and is therefore assumed to be perfectly known), the reduction in error
variance accrued from knowing that parameter or parameter type, is a measure of the
contribution made to the variance of the prediction by that parameter type. This
analysis can be undertaken at an optimum number of singular values as determined by
prior use of PREDVAR1. It can also be undertaken at zero singular values, to
determine pre-calibration contribution of different parameters and/or parameter types
to predictive error variance. The change between pre- and post-calibration predictive
error variance is a measure of the effect that the calibration process has in reducing
the effect of that parameter or parameter type on the error variance of the studied
prediction.

2. Where a parameter is spatially variable, and where this variability its characterized
within a model using a mechanism such as pilot points, contribution to predictive
error variance made by different parameters can be contoured. This presents a graphic
means by which the worth of making direct property measurements in different parts
of the model domain, as a means of reducing the uncertainty of a particular
prediction, can be assessed. The variance of the “measured” prediction does not need
to be reduced to zero in this process; it can simply be diminished, thus reflecting the
fact that direct “measurements” of system properties have their own sources of
uncertainty.

4.11.2 Using PREDVAR2

Like PREDVAR1, PREDVAR2 commences execution with the prompt:-
 Enter name of PEST control file:

It is assumed that a corresponding JCO file is present (PREDVAR2 will cease execution with
an error message if it is not). It is important to note that, as for PREDVAR1, the model need
not be calibrated; hence values employed in the PEST control file (and those on which
derivatives recorded in the JCO file are based) can be best parameter estimates originating
from outside the calibration process. A JCO file pertaining to these parameter estimates can
be obtained by running PEST on the basis of this PEST control file with NOPTMAX set to 1

Model Predictive Error Analysis 135

or -1. In some circumstances it may be convenient to write this JCO file on the basis of a JCO
file written on a previous PEST run using the JCO2JCO utility.

As for PREDVAR1, it is assumed that the inverse squares of weights contained in the cited
PEST control file are proportional to measurement variances, and that any measurement
covariance matrices cited in the PEST control file are related to true measurement
covariances using the same proportionality constant; see equation 4.12. PREDVAR2 then
asks for the value of this constant, that is for the reference variance. The prompt is:-
 Enter observation reference variance:

Next PREDVAR2 prompts:-
 Enter name of parameter uncertainty file listing file:

A parameter uncertainty file listing file must list the names of parameter uncertainty files,
one after the other; see the example below.
Horizontal K’s set to zero
param1.unc
Vertical K’s set to zero
param2.unc
Sy’s set to zero
param3.unc

Part of a parameter uncertainty file listing file.

Any line within a “parameter uncertainty file listing file” that begins with the “#” character,
or is blank, is ignored. Files cited within this file must be parameter uncertainty files (use
quotes to surround filenames containing a blank), the format of which is described in the
documentation to program PARAMERR. There is no limit to the number of files which can
be so listed. Each one of these files allows construction of a C(p) matrix as required for use
in equations 4.4 and 4.11.

Next PREDVAR2 asks for the name of a predictive sensitivity matrix file. This contains the y
vector of equations 4.4 and 4.11. This matrix can be built using a text editor if desired.
However in most cases it is easier to extract it from a JCO file using the JROW2VEC utility.
PREDVAR2’s next prompt is:-
 Enter number of singular values before truncation:-

Enter a number between 0 and the number of adjustable parameters cited in the PEST control
file; on most occasions the number of singular values should correspond to the optimum for
the prediction of interest identified using PREDVAR1.

PREDVAR2 next prompts for the name of its principal output file:-
 Enter name for predictive error variance output file:

For each parameter uncertainty file listed in the parameter uncertainty file listing file, the
PREDVAR2-generated variance output file will contain predictive error variance
components corresponding to the first and second terms of equation 4.4, as well as the total
predictive error variance; it will also list the square root of the later as the total predictive
standard deviation.

Finally PREDVAR2 prompts:-
 Enter name for SVD file [<Enter> to read an old one]:

Model Predictive Error Analysis 136

PREDVAR2 records the outcomes of singular value decomposition of the XtQX matrix in an
ASCII file. This may be useful for its own sake (in order that the user may be aware of the
linear parameter combinations defining orthogonal directions in parameter space which
would correspond to super parameters if SVD-assist were to be employed in the calibration
process). However if this file is read in a subsequent PREDVAR2 run (instead of re-
calculating the singular value decomposition of XtQX), considerable savings in computation
time can be achieved where large numbers of adjustable parameters are cited in the PEST
control file (with slight loss or precision through having to read these results from an ASCII
file). However for the SVD file to be valid for the current run, no alterations should have
been made to the PEST control file on which the current PREDVAR2 run is based, between
this run and its previous one. If the user presses the <Enter> key in response to the above
prompt, signalling that such an old SVD file should be read, PREDVAR2 then prompts for
the name of this file.

After all of the above questions have been answered, PREDVAR2 undertakes its
calculations, recording the progress of its work to the screen. Its output file can be inspected
at any time during these calculations.

4.12 PREDVAR3

4.12.1 General

PREDVAR3 bares some resemblance to PREDVAR2 in that it is employed for calculation of
the contribution of different parameter types, or parameter groups, to the potential error of a
prediction of interest. However the methodology underpinning its use is more general than
that of PREDVAR2. Hence it is more suitable for use in contexts where predictive error is
shared between both of the terms of equation 4.4. PREDVAR2, on the other hand, is suited to
those contexts where the first term of equation 4.4 dominates predictive error variance, and
where the second term is small or absent (as it is when an assessment is being made of pre-
calibration predictive error variance).

As for PREDVAR2 and PREDVAR1, use of PREDVAR3 does not depend on the existence
of a calibrated model. All that is required is that sensitivities of model-generated
measurement-equivalents to all parameters employed by the model be available where the
model is run under calibration conditions, and that the sensitivities of a model prediction of
interest to all parameters employed by the model also be available.

There are a number of ways in which the “contribution to total predictive error variance” by a
particular parameter, or parameter type/group can be defined. One way in which such a
quantity can be calculated is through undertaking the following exercise.

1. Use PREDVAR1 (possibly in conjunction with SCALEPAR in order to scale
parameters by their inherent variabilities) to determine the minimum predictive error
variance achievable for a certain prediction. This is accomplished by plotting
predictive error variance vs. number of singular values, and identifying the minimum
of this curve.

2. Build a new PEST control file (corresponding to calibration conditions, and possibly

Model Predictive Error Analysis 137

predictive conditions for the sake of obtaining predictive sensitivities) in which
parameters comprising a particular type or group are held fixed, thus implying that
they are notionally perfectly known by the modeller.

3. Obtain the Jacobian matrix pertaining to this new PEST control file. This is normally
easily obtained from the Jacobian matrix corresponding to the original PEST control
file (in which no parameters are fixed) using the JCO2JCO utility.

4. Run PREDVAR1 on the basis of this new PEST control file and complimentary
Jacobian matrix file to calculate minimum predictive error variance. The difference
between this predictive error variance and the original predictive error variance based
on a full parameter set is a measure of the amount by which the attainment of perfect
knowledge of the newly fixed parameters would reduce the error variance of the
prediction of interest. It can thus be considered to quantify the “contribution” made by
this parameter type to the error variance of the prediction of interest.

PREDVAR3 carries out the same operations as listed above, without the need for production
of new PEST control files and Jacobian files, and without the need to run PREDVAR1
repeatedly. However because of its similarity to PREDVAR1, many of its inputs resemble
that of this program.

4.12.2 Using PREDVAR3

PREDVAR3’s first four prompts are the same as those of PREDVAR1. They are repeated
below:-
 Enter name of PEST control file:
 Enter observation reference variance:

 Enter name of parameter uncertainty file:
 Enter name of predictive sensitivity matrix file:

See documentation of PREDVAR1 for details of how to respond to these prompts. (Note that
use of PREDVAR3, like that of PREDVAR1, assumes that observation weights contained in
the PEST control file are inversely proportional to measurement uncertainties, and/or that one
or a number of measurement covariance matrices are supplied whose elements are related to
measurement noise by the same constant of proportionality, this being the reference variance
referred to above; see documentation of PREDVAR1 for further details.)

Next PREDVAR3 prompts for a “singular value list” file. That is:-

Enter name of singular value list file:

This is a file containing singular values written one to a line. For every parameter type
nominated by the user (see below), PREDVAR3 calculates the predictive error variance
corresponding to all of these singular values. It then selects the minimum of these variances
and records that on its output file. It is important to note that if a model has many parameters,
then use of many singular values can lengthen PREDVAR3 execution time a great deal.
Normally the user will know roughly where the minimum will lie, and can properly span this
space. If the space is wide, then perhaps employing a singular value set with an increment of
two or three, rather than unity, may also help. If it is found that a minimum error variance
exists at either end of the supplied sequence of singular values, this is evidence that a large

Model Predictive Error Analysis 138

enough range of singular values may not have been spanned. PREDVAR3 lists the singular
value corresponding to the minimum predictive error variance for each parameter type in its
output file; see below.

Next PREDVAR3 prompts:-

Enter name of parameter type list file:

The format of such a file is demonstrated below.

* parameter type “none”
* parameter type ro
ro1
ro2
ro3
ro4
ro5
* parameter type thickness
th1
th2
th3
th4
* parameter type “bot_elev”
belev1
belev2
etc

Format of a “parameter type list” file.

Normally the parameter type list file will be prepared by extracting a list of parameters from
the PEST control file for the current case and simply inserting parameter type identifiers
within this list as shown above. Each set of parameters appearing between two such
identifiers (or between an identifier and the end of the file) comprises a “parameter type”,
with the name of this type being defined after the “* parameter type” string which identifies
the beginning of the listing for that type.

Note the following.

1. The list of parameters comprising a certain type can be empty. In this case no
parameters are frozen and the predictive error variance is equivalent to that which
would be computed by PREDVAR1 on the basis of all model parameters.

2. A given parameter can belong to more than one type if desired.

3. There is no limit to the number of parameter types which can be represented in a
parameter type file.

4. The name of a parameter type should be 12 characters or less in length. It can
optionally be surrounded by quotes.

5. If the overall C(p) matrix for the current case indicates that correlation exists between
certain parameters (that is, if C(p) is not a diagonal matrix), then correlated
parameters must belong to the same parameter type, and must thus be all frozen
together or not at all. (Proper calculation of separate predictive error variance
contributions by parameters which are correlated requires that the C(p) matrix be

Model Predictive Error Analysis 139

conditioned as a result of the attainment of perfect knowledge pertaining to the
notionally fixed parameters. Where a fixed parameter is not correlated with any other
parameter, such conditioning of C(p) is not necessary.)

For each parameter type identified in the parameter type listing file, PREDVAR3 computes
the predictive error variance for all singular values nominated in the singular value list file. It
then records the minimum such variance to its output file, an example of which is shown
below. Also recorded are the first and second predictive error terms corresponding to the
minimized predictive error variance.

Name of prediction = "ar10"

Fixed_params First_term Second_term Minimized_error_variance Sing_vals_at_min
none 4.4625057E-02 0.1285734 0.1731985 4
top 4.0642764E-02 0.1438543 0.1844970 2
bottom 1.9366123E-02 9.0539228E-03 2.8420046E-02 2
middle 3.4950000E-02 5.6072226E-02 9.1022226E-02 4

Part of a PREDVAR3 output file.

A PREDVAR3 output file is easily imported into a spreadsheet program such as EXCEL for
undertaking the subtractions necessary to obtain contributions made by different parameter
types to the variance of a certain prediction.

4.13 PREDVAR4
PREDVAR4’s purpose and use are identical to those of PREDVAR3. However it offers a
slightly higher level of functionality than PREDVAR3.

If certain parameters are frozen for the purpose of calculating their contribution to predictive
error variance, and if those parameters are correlated with non-frozen parameters, the C(p)
matrix of the latter is conditioned by the fact that the former are now notionally perfectly
known, and hence have no uncertainty associated with them. Use of the conditioned C(p)
matrix in predictive error variance computation results in an altered error variance, reflecting
the fact that notional perfect knowledge of the frozen parameters has implications for
knowledge of the “innate variability” of the non-frozen parameters as well.

Let the parameter vector p be partinioned into two separate parts, each pertaining to a
separate group of parameters. Thus:-

 p = 








2

1

p
p

C(p) is then correspondingly partitioned as:-

 C(p) = 








2221

1211

CC
CC

Suppose further that the elements of p2 are known. Then, if there is correlation between at
least some members of p2 and some members of p1 (resulting in non-null C12 and C21

Model Predictive Error Analysis 140

submatrices), the conditioned C11matrix C´11 is calculable as:-

 C´11 = C11 – C12C-1
22C21

PREDVAR4 uses C´11 in calculation of the null space contribution to predictive error
variance. (PREDVAR3, on the other hand, does not allow correlation to exist between frozen
and non-frozen parameters when evaluating contributions of different parameter types to
predictive error variance.)

4.14 PREDVAR5

4.14.1 General

PREDVAR5 is used for analysing the effect of individual observations, or groups of
observations, on the error variance of a particular prediction. It has two modes of operation.
These are as follows.

1. It allows ranking of the relative worth of present observations by calculating
predictive error variance with selected ones, or groups, of these observations removed
from the existing calibration dataset.

2. It allows ranking of the relative worth of new observations by calculating predictive
variance with selected ones, or groups, of these new observations added to the
existing calibration dataset.

As for PREDVAR3 and PREDVAR4 (which work with parameter contributions to predictive
error variance instead of observation contributions), PREDVAR5 allows observations to be
grouped into “types” for addition to, or subtraction from, the existing calibration dataset. The
format of an “observation type list file” is very similar to that of the “parameter type list file”
used by PREDVAR3 and PREDVAR4. An example of such a file follows.
* observation type "base"
ar8
ar9
..
ar34
* observation type “none”
* observation type "type1"
ar5
ar3
ar4
* observation type "flows"
flow1
flow2
* observation type "heads"
head1
head2
etc

Format of an “observation type list” file.

The PREDVAR5 observation addition and subtraction options will now be discussed in more

Model Predictive Error Analysis 141

detail.

4.14.1.1 Subtracting Observations

This is the easier of the two options to implement. In this case each set of observations
belonging to the different observation types nominated in the observation type list file is, in
turn, removed from an existing PEST input dataset as set out in an existing PEST control file;
this is effected by setting all of the pertinent observations weights to zero. Not only
observations can be removed, but prior information equations as well. However it is
important to note that regularisation observations and prior information equations are ignored
when PREDVAR5 (and any of the other PREDVAR programs) calculate predictive error
variance. If the PEST control file whose name is provided to PREDVAR5 instructs PEST to
run in regularisation mode, and if an observation or prior information equation is cited in an
observation type list file which belongs to a regularisation group, PREDVAR5 will cease
execution with an error message.

Naturally, each observation cited in an observation type list file must be cited in the PEST
control file which defines the current calibration exercise.

An observation type can have no members; often the first nominated observation type will
have no members. Thus PREDVAR5 will calculate predictive error variance with no
observations subtracted from the current PEST dataset. The contributions that other
nominated types of observation make to the accuracy of a certain prediction can then be
evaluated by subtracting the error variance of that prediction with the observation type
included, from that calculated with it missing. PREDVAR5 does not undertake this
subtraction itself. However it can be easily carried out if the PREDVAR5 output file is
imported into a spreadsheet.

4.14.1.2 Adding Observations

In this case the first observation type listed in the observation type list file must be a “base
type”, and must be named “base”. As for the subtraction alternative, all observations cited in
the observation type list file must also be cited in the PEST control file which defines the
current inversion problem. The set of base observations are always employed in the notional
inversion processes carried out by PREDVAR5. Other observation types are added to this
base set in sequential PREDVAR5 predictive error variance calculation operations. The
effect that each set of new observations has in reducing the error variance of the nominated
prediction can then be judged by subtracting the error variance computed with inclusion of
the new observation type in the notional inversion process from that computed on the basis of
the base observation type alone. All observations contained within the PEST control file that
do not belong to the base observation type, or to the observation type that is being currently
processed, are assigned a weight of zero.

As for the observation subtraction option, prior information can be included in an observation
type. However if, in the PEST control file read by PREDVAR5 which defines the current
inversion problem, PEST is run in regularisation mode, a regularisation observation or prior
information equation cannot be cited in the observation type listing file, as PREDVAR5
ignores these observations and prior information equations.

Model Predictive Error Analysis 142

The base observation type can be empty if desired. In this case the contribution to error
variance made by the second term of the error variance equation (i.e. the “measurement noise
term”) is zero, and that made by the first term is the error variance under pre-calibration
conditions (i.e. the pre-calibration predictive uncertainty). However other observation types
cannot be empty in this case. Where the base observation type is empty, each listed
observation type sequentially comprises the entirety of the tested calibration dataset.

The “observation addition” option is useful for assessing the relative worth of different data
acquisition strategies. All possible additional observations are included in the PEST control
file, along with the existing calibration dataset (the latter comprising the base observation
type). PREDVAR5 then computes the predictive error variance with different observation
types in turn added to the set of base observations. The user can then compare the relative
efficacy of these observation types in lowering the error variance of the identified prediction.
Note that a given observation can appear in more than one observation type.

4.14.2 Using PREDVAR5

PREDVAR5 commences execution with the prompts:-
 Enter name of PEST control file:
 Enter observation reference variance:

As for the other PREDVAR programs, the PEST control file provides specifications of the
current inverse problem. It defines the parameters involved in that problem and their
transformation status. It is assumed that a corresponding Jacobian matrix file (i.e. JCO file)
exists; this is assumed to have the same filename base as the PEST control file, but to possess
an extension of “.jco”. It may have been created on a previous PEST run (possibly with the
NOPTMAX variable set to -1 so that the run was carried out specifically for this purpose), or
it may have been created using the JCO2JCO utility.

See the next section for a discussion of the reference variance.

PREDVAR5’s next prompt us:-
 Enter name of parameter uncertainty file:

This file provides the C(p) matrix; its format has been described elsewhere in this manual.
Next PREDVAR5 prompts:-
Enter name of predictive sensitivity matrix file:

This is a file, in PEST matrix file format, containing the sensitivities of a prediction of
interest to parameters cited in the PEST control file. Note the following.

1. Sensitivities to parameters additional to those existing in the PEST control file are
ignored. Also, the ordering of parameters in the matrix file does not need to be the
same as in the PEST control file.

2. If a parameter is log transformed or has other parameters tied to it, this must be
reflected in the sensitivities supplied in this file.

3. If a parameter is cited in the PEST control file (but is not fixed or tied) but not in the
parameter sensitivity vector, PREDVAR5 ceases execution with an appropriate error

Model Predictive Error Analysis 143

message.

Normally the predictive sensitivity vector will have been extracted from a JCO file using the
JROW2VEC utility.

Next PREDVAR5 prompts:-
 Enter name of singular value list file:

The role of this file is the same as its role in other PREDVAR programs. That is, it provides a
list of singular values for which PREDVAR5 calculates error variance for each of the various
observation types asked of it. It choses the minimum predictive error variance in each case. It
is important to ensure that the range of singular values provided in this file is sufficient to
encompass the predictive error variance minimum (a previous PREDVAR1 exercise may
help in this regard). It is also a good idea for singular values to be sequential, and separated
by unity. This minimises “granularity” in predictive error variance contributions when large
numbers are subtracted from each other to form smaller ones.

PREDVAR5’s next prompt is:-
 Enter name of observation type list file:

The format of this file is described above. Then:-
 Subtract list members or add to base observations [s/a]:

This is where the user selects between the two modes of PREDVAR5 operation described
above. Its final prompt is:-
 Enter name for predictive error variance output file:

The PREDVAR5 output file is similar to that of PREDVAR3 and PREDVAR4. It is normally
best to import this file into a spreadsheet. For the observation addition option, subtract the
predictive error variance calculated with each new set of nominated observations from the
predictive error variance computed with no observations subtracted (the latter can be
computed using an empty observation type) to calculate the effect that each observation type
would have in reducing predictive error variance from its current value. For the observation
subtraction option, subtract the predictive error variance computed with no observations
subtracted from that calculated with each nominated observation type subtracted to compute
the effect that each observation type has in achieving the predictive error variance of the
currently calibrated model.

4.14.3 Observation Weights

Unlike other predictive error variance analysis programs supplied with the PEST suite,
PREDVAR5 does not prompt for an observation uncertainty file. Instead PREDVAR5 (and
all of the other PREDVAR programs) assumes that observation weights supplied in the PEST
control file are proportional to the inverse of measurement standard deviations. Alternatively,
a covariance matrix may be supplied for one or a number of observation groups cited in the
PEST control file (using normal PEST control file protocol). A user’s original idea of
measurement variance may have been altered through a previous calibration exercise, from
which a non-unity reference variance was obtained. This reference variance can be supplied
to PREDVAR5 in response to the second of its prompts. If a value other than unity is

Model Predictive Error Analysis 144

supplied, PREDVAR5 effectively multiplies all covariance matrices cited within the PEST
control file by this reference variance; all weights are effectively divided by the square root
of this reference variance.

4.14.4 Parameter Scaling

Parameters should be scaled using the SCALEPAR utility before using any of the PREDVAR
programs. This ensures that there are no rises in predictive error variance before the latter
starts to fall as singular values are increased (or that these rises are small, as can happen
where some parameters are correlated with each other through non-diagonal terms of the
C(p) matrix). It also promotes minimization of predictive error variance. You don’t actually
need to run PEST using the PEST calibration dataset generated by SCALEPAR to obtain
scaled parameters; however you do need to allow SCALEPAR to compute the scaled
parameter Jacobian matrix. Furthermore you need to adjust parameter standard deviations
such that they are all unity; similarly, parameter covariance matrices should be adjusted so
that their diagonal elements are all unity in harmony with SCALEPAR’s re-scaling
calculations; off-diagonal elements must be adjusted accordingly. Predictive sensitivities
must be scaled in the same way that observation sensitivities are scaled.

4.15 PREDVAR1A
The functionality of PREDVAR1A is very similar to that of PREDVAR1. However there are
a number of noteable differences, these being as follows.

1. PREDVAR1A does not undertake singular value decomposition of the XtQX matrix.
Rather, it undertakes singular value decomposition of Q1/2X. Where there are fewer
observations than parameters, this is numerically far swifter (especially where there
are many parameters).

2. It does not read or write an SVD file. (It is assumed that use of PREDVAR1A will
take place where parameter numbers are large; hence the SVD file would be very
large indeed.)

3. PREDVAR1A calculates error variance terms for not just one, but for many
predictions.

Prompts, and typical responses, to PREDVAR1A are displayed below.

 Enter name of PEST control file: case.pst
 Enter observation reference variance: 1.0

 Enter name of parameter uncertainty file: param.unc
 Enter name of predictive sensitivity matrix list file: predfile.lst

 Enter no. of singular values before truncation [<Enter> if no more]: 0
 Enter no. of singular values before truncation [<Enter> if no more]: 1
 Enter no. of singular values before truncation [<Enter> if no more]: 2
 Enter no. of singular values before truncation [<Enter> if no more]:

Part of a “predictive sensitivity matrix list file” is shown below.

Model Predictive Error Analysis 145
ar10.vec ar10.sen
ar9.vec ar9.sen
ar8.vec ar8.sen
ar7.vec ar7.sen

A predictive sensitivity matrix list file.

Each line of a predictive sensitivity matrix list file must contain two entries. The first is the
name of a predictive sensitivity file. The second is the name of the file to which predictive
variances for all nominated singular values are to be written for the prediction whose
parameter sensitivities are contained in the first file of the line. The following should be
noted.

1. Blank lines are permissible in a predictive sensitivity matrix list file.

2. If a filename contains a blank character, its name should be enclosed by quotes.

4.16 PCOV2MAT

4.16.1 General

The purpose of PCOV2MAT is to facilitate the calculation of model predictive error variance
in over-determined inversion contexts; these are contexts where regularisation is not
employed as part of the inversion process. In these circumstances parameter error
variance/covariance is completely described by the parameter covariance matrix produced as
an outcome of the parameter estimation process. This is because, under these circumstances,
the resolution matrix R of equation 4.1 is in fact the identity matrix I. If the measurement
weight matrix Q is proportional to the inverse of the measurement noise matrix C(ε), then at
the end of the parameter estimation process this can be updated through multiplication by the
reference variance σ2

r calculated from the minimized objective function Фmin as:-

 σr
2 = Фmin/(n-m) (4.13)

where n and m are the number of observations and parameters respectively featured in the
parameter estimation process. Thus Q now becomes:

 Q = σr
2C-1(ε) (4.14)

and the parameter error covariance matrix (or simply “parameter covariance matrix” under
these over-determined circumstances) can be calculated as:-

 C(p-p) = σr
2(XtQX)-1 (4.15)

The parameter error covariance matrix is recorded by PEST at the end of its run record file
case.rec; it is also calculated intermittently by PEST and recorded in the matrix file case.mtt.
In both of these cases case is the filename base of the PEST control file on which the current
parameter estimation exercise is based.

If a prediction has parameter sensitivities y, then the error variance of that prediction can be
calculated as:-

Model Predictive Error Analysis 146

 σ2
s-s = ytC(p-p)y (4.16)

4.16.2 Using PCOV2MAT

PCOVMAT is run using the command:-
pcovmat pestfile matfile

where:-

pestfile is the name of a PEST run record file or matrix file containing a covariance
matrix, and

matfile is the name of the matrix file to which the matrix will be written; see Section
4.4.3 for a description of the format of this file.

The following should be noted.

1. Only adjustable parameters are cited in a parameter covariance matrix; fixed or tied
parameters are not cited.

2. It is preferable to use the parameter covariance matrix from a run record file over that
recorded in a matrix file as the former is calculated using sensitivities pertaining to
optimized parameters, whereas the covariance matrix recorded in the latter file is
calculated on the basis of sensitivities pertaining to the latest PEST iteration.

3. A covariance matrix is not recorded in the matrix file unless the ICOV variable in the
“control data” section of the PEST control file is set to 1.

Once the parameter error covariance matrix has been translated by PCOV2MAT to matrix
file format, the error variance of a particular prediction can be calculated on the basis of
equation 4.16 using the MATQUAD utility documented in the next section. Prediction
sensitivities can be extracted from a Jacobian matrix file using the JROW2VEC or
JROW2MAT utilities; in the latter case the MATTRANS utility must be used before
MATQUAD is employed to calculate predictive error variance.

4.17 SCALEPAR

4.17.1 General

SCALEPAR was written primarily to assist in the use of programs such as PREDVAR1 and
PREDVAR2. However there is no reason why it cannot also be employed in normal
parameter estimation. The purpose of SCALEPAR is to re-formulate an inversion problem in
terms of scaled parameters rather than native parameters, with parameters scaled according to
their standard deviations. This can result in smaller predictive error variance when
undertaking regularised inversion, and may forestall rises in predictive error variance
incurred by the calibration process which can sometimes occur where the “innate variability”
of parameters (as expressed by the C(p) matrix of equation 4.1) is such that individual
parameters are highly correlated with each other and have very different variances. Where a
parameter is log-transformed in the inversion process, and where pertinent elements of C(p)

Model Predictive Error Analysis 147

thus refer to the log (to base 10) of that parameter, SCALEPAR takes this into account.

In re-formulating the inverse problem, SCALEPAR writes a new PEST control file in which
scaled parameters have an initial value of zero and are permitted to vary between -3.0 and
3.0. Because parameters are scaled by their standard deviations, they are thus allowed to vary
by three standard deviations either side of their most likely value of zero, this corresponding
to a native parameter value also equal to its most likely value. It is assumed that the most
likely value of each native parameter corresponds to its initial value as supplied in the
original PEST control file. Thus, when writing this PEST control file, the user must ensure
that initial parameter values are indeed “most likely” parameter values, that is “expected
parameter values” in the statistical sense.

If a parameter is log-transformed in the original PEST control file, scaled parameters defined
in the SCALEPAR-generated PEST control file are actually the scaled logs of such
parameters. Once again, a scaled parameter value of zero corresponds to a native
untransformed parameter value equal to that of the initial value supplied in the original PEST
control file.

Whether parameters are log-transformed or not in the original parameter estimation problem,
back transformation from scaled parameter values (as seen by PEST) to native parameter
values (as seen by the model) is undertaken by the PAR2PAR utility documented in the
PEST manual, which is run as part of the model ahead of any other components of the model.
The new PEST control file written by SCALEPAR cites only one template file, this
corresponding to a PAR2PAR input file. After it has “de-scaled” parameter values PAR2PAR
writes native parameter values to all model input files which require them according to
specifications set out in the original PEST control file.

SCALEPAR also provides the option of writing a Jacobian matrix corresponding to the new
PEST control file. Sensitivities which occupy the elements of this new Jacobian matrix are
computed from sensitivities occupying corresponding elements of a Jacobian matrix file
corresponding to the original PEST control file (if such a Jacobian matrix exists).

4.17.2 Calculating the Resolution Matrix of Native Parameters

Suppose that unscaled parameters cited in the original PEST control file are designated by the
vector p, and that their scaled counterparts are designated by the vector q. Thus:-

 q = Sp (4.17)

where S is a diagonal “scaling matrix” whose elements are the inverse of the standard
deviations of the parameters to which they pertain. Note that offsets (i.e. parameter initial
values) are ignored in this equation for the sake of simplicity; however they are included in
the actual SCALEPAR transformation process.

Suppose that explicit or notional (for example using PREDVAR1) regularised inversion has
been carried out, and that a resolution matrix R has been calculated linking estimated scaled
parameters q to their real-world (but unknown) counterparts q. Thus:-

 q = Rq (4.18)

Model Predictive Error Analysis 148

Using (4.17), together with the relationship:-

 p = S-1q

derived from (4.17), it is possible to compute the relationship between estimated native
model parameters and their real-world counterparts as:-

 p = S-1q = S-1Rq = S-1RSp (4.19)

Thus the resolution matrix R´ linking p to p is:-

 R´ = S-1RS (4.20)

SCALEPAR records the S and S-1 matrices in matrix file format discussed in the following
section. The utility program MATPROD can then be employed to implement the matrix
multiplication of (4.20) if necessary.

4.17.3 Running SCALEPAR

SCALEPAR is run by typing its name at the command prompt. No command line arguments
are required because SCALEPAR asks the user specifically for each item of information that
it requires.

SCALEPAR begins execution with the prompt:-
 Enter name of existing PEST control file:

Supply the name of an existing PEST control file in response to this prompt. SCALEPAR
requires that this file meet the following specifications.

1. No prior information must be cited in this file.

2. The SCALE associated with each parameter (in the “parameter data” section of the
existing PEST control file) must be 1.0, while each parameter OFFSET must be 0.0.

3. The model command line must cite a batch or script file. In the PC environment this
command must have an extension of “.bat”.

4. Only a single command must be employed to run the model for finite-difference
calculation of derivatives with respect to all adjustable parameters; thus PEST’s
multiple command line functionality must not be invoked, and the control variable
NUMCOM must be set to 1, or omitted.

5. Derivatives must be calculated by finite differences and not supplied by the model
through an external file. Thus the JACFILE control variable must be set to zero or
omitted.

If any of these conditions are violated, SCALEPAR will cease execution with an appropriate
error message.

SCALEPAR’s next prompt is:-

Model Predictive Error Analysis 149
 Enter name of parameter uncertainty file:

The format of this file is described in the documentation to program PARAMERR above.
Uncertainty data (i.e. data comprising the C(p) matrix) must be supplied in this file for each
adjustable (i.e. non-fixed and non-tied) parameter cited in the original PEST control file. As
usual, if a parameter is log-transformed, pertinent elements of C(p) must pertain to the log of
that parameter.

SCALEPAR next asks:-
 Enter name for new PEST control file:

in response to which the name of the PEST control file which SCALEPAR must write should
be provided.

Once it has been provided with this name, SCALEPAR issues a series of prompts, to which
the user can respond simply by pressing the <Enter> key in each case to accept the
SCALEPAR default. The prompts are:-
 Enter name for PAR2PAR input file (<Enter> if p2p###.dat):
 Enter name for template of this file (<Enter> if p2p###.tpl):
 Enter name for parameter value file (<Enter> if p###.par):
 Enter name for template of this file (<Enter> if p###.tpl):
 Enter name for scaling matrix file (<Enter> if scale.mat):
 Enter name for inverse scaling matrix file (<Enter> if iscale.mat):
 Run model in silent or verbose mode [s/v] (<Enter for "s"):

As discussed above, parameter “de-scaling” is actually undertaken by PAR2PAR. Prior to
each model run the modified PEST control file informs PEST that it must write a PAR2PAR
input file in which scaled parameter values are listed. PAR2PAR then computes native
parameter values from these scaled values (and performs inverse log transformation if
necessary) and writes them to appropriate model input files. SCALEPAR ensures that the
PAR2PAR input file that PEST writes contains the names of all model template and
corresponding input files involved in the inversion process as listed in the original PEST
control file. In fact SCALEPAR writes a template file of the PAR2PAR input file for the use
of PEST, and informs PEST of the name of the PAR2PAR input file to which this template
file corresponds. The names of the PAR2PAR template file and corresponding PAR2PAR
input file can be supplied in response to the first two of the above set of prompts.

As is documented in the PEST manual, as PEST carries out the parameter estimation process,
it records optimised parameter values in a “parameter value file”. If PEST is run on the basis
of the SCALEPAR-generated PEST control file, optimised scaled parameter values are
indeed recorded in this file. This is of limited use to the user, however, who is normally more
interested in optimised native parameter values than scaled parameter values. Unfortunately,
native parameter values are known only to PAR2PAR, and not to PEST. To overcome this
difficulty, PAR2PAR is instructed to write, on each occasion that it runs, a file that has the
same format as a PEST parameter value file (and can thus be used by utility programs such as
PARREP), containing native parameter values employed on that model run. The name of this
file can be supplied by the user in response to the third of the above prompts. SCALEPAR
provides PAR2PAR with a template file through which it can write this file; the name of this
template file can be supplied in response to the fourth of the above prompts.

It is important to note that, unlike the parameter value file recorded by PEST, the parameter
value file recorded by PAR2PAR does not contain optimised parameter values up to the stage

Model Predictive Error Analysis 150

of the parameter estimation process at which it is viewed. Because PAR2PAR writes model
input files on the basis of template files on each occasion that the model is run, the
PAR2PAR-generated parameter value file contains native parameter values employed only
on the last model run. However if PEST has completed the parameter estimation process (or
is halted using the “stop with statistics” option), it will have completed a final model run
employing optimised parameter values. Thus at the end of the parameter estimation process
the PAR2PAR-generated parameter value file will, in fact, contain optimised native
parameter values.

As stated above, SCALEPAR generates matrix files containing the S and S-1 scaling and
inverse scaling matrices. The names of these matrix files can be supplied in response to the
fifth and sixth of the above prompts.

The model as run by the modified PEST control file must itself be modified so that
PAR2PAR can be run ahead of the actual model in order to generate native parameters from
the scaled parameters employed by PEST, and write these to model input files. SCALEPAR
adds the command to run PAR2PAR to the batch or script file which was originally
employed for running the model. The name of this modified batch file is always
scalebatch.bat. If the “silent” option is selected in response to the last of the above prompts,
PAR2PAR will direct its screen output to the “nul” file instead of to the screen, thus
preventing PEST’s screen output from being scrolled away out of sight.

SCALEPAR’s final prompt is:-
 Write a JCO file for this case [y/n] (<Enter> for "n"):

If the response to this prompt is “y”, and if a Jacobian matrix file complementary to the
original PEST control file exists, SCALEPAR will write a Jacobian matrix file which
complements the new PEST control file. This can then be used in conjunction with
PREDVAR1 and PREDVAR2 in examining predictive variances. Alternatively, it can be
used in the first iteration of a PEST run undertaken on the basis of the new PEST control file
if that run is initiated with the “/i” switch. (In the latter case it will eventually be overwritten
by PEST as it optimises parameters on the basis of the new PEST control file.)

4.17.4 The New PEST Control File

Certain features of the control file generated by SCALEPAR are worthy of mention.

Scaled parameters cited in the SCALEPAR-generated PEST control file are given the same
names as their unscaled counterparts in the original PEST control file. Only adjustable
parameters are cited in this file. Tied and fixed parameters are still involved in the modified
inversion process; however the values of fixed parameters, and the multipliers through which
tied parameters are linked to their parent parameters, are recorded in the SCALEPAR-
generated PAR2PAR template file. Hence PAR2PAR, and not PEST, accommodates the
assignment of values for these parameters to the model.

It was mentioned above that scaled parameters are provided with an initial value of zero, and
upper and lower bounds of -3.0 and 3.0. A value of zero for a scaled parameter corresponds
to a native parameter value equal to its initial value as supplied in the original PEST control
file; the parameter offsetting required to achieve this is taken care of by PAR2PAR through

Model Predictive Error Analysis 151

the pertinent equations written by SCALEPAR to the PAR2PAR template file. An inspection
of the SCALEPAR-generated PEST control file will reveal, however, that scaled parameters
themselves are actually offset by 10.0 from zero, and provided with lower bounds of -7.0 and
upper bounds of 13.0. This circumvents problems that are sometimes encountered with the
imposition of relative change limits on parameter upgrades through use of the RELPARMAX
control variable for parameters that are close to zero. In short, relative-limited parameters can
be upgraded towards zero very rapidly; however they can only move back from zero
relatively slowly because any change in the value of a near-zero parameter is large relative to
its current value. This can slow the parameter estimation process considerably in some
circumstances.

All scaled parameters in the SCALEPAR-generated PEST control file are declared as
relative-limited; RELPARMAX is provided with a value of 0.1 (this being relative to their
offset values of 10.0). This, and parameter OFFSET values, can be altered if desired by direct
editing of the SCALEPAR-generated PEST control file.

All parameters are assigned to a single parameter group in the SCALEPAR-generated PEST
control file. This group is assigned an absolute increment for the purpose of derivatives
calculation, this increment being 0.01. This, and any other aspect of the PEST control file
generated by SCALEPAR, can also be altered by direct editing of this file if desired.

4.18 REGERR

4.18.1 General

REGERR evaluates the covariance matrix of regularisation-induced model output error. For
present purposes this is defined as:-

 τ = X(I – R)p (4.21)

so that:-

C(τ) = X(I – R)C(p)(I – R)tXt (4.22)

In this equation C(p) is the pre-calibration parameter covariance matrix, R is the resolution
matrix for the current inversion problem, and X is the Jacobian matrix. REGERR obtains R
from a RESPROC output file and X from a Jacobian matrix file (i.e. a JCO file). Presumably
these will have been produced on the basis of the same PEST input dataset. However
REGERR only tests that the number of parameters cited in the RESPROC output file and the
number of parameters cited in the Jacobian matrix file are the same. The number of
observations can differ between these two files. Thus the Jacobian matrix file can pertain to
model outputs that differ from those employed in the calibration process if desired; the
covariance matrix of regularisation-induced predictive error can thereby be calculated. The
latter is very similar to the covariance matrix of predictive error; however it lacks the
contribution to this error from measurement noise.

Model Predictive Error Analysis 152

4.18.2 Running REGERR

REGERR is run simply by typing its name at the screen prompt; it then prompts the user
specifically for its input data requirements. Prompts, and typical replies, are illustrated
below:-
 Enter name of RESPROC output file: case.rpo

 Enter name of parameter uncertainty file: param.unc

 Enter name of Jacobian matrix file: case.jco

 Enter name for output covariance matrix file: cov.mat

 - reading RESPROC output file case.rpo...
 - file case.rpo read ok.

 - reading Jacobian matrix file case.jco...
 - Jacobian matrix file case.jco read ok.

 - reading parameter uncertainty data...
 - parameter uncertainty data read ok.

 - calculating regularisation-induced output error covariance matrix...
 - file cov.mat written ok.

The format of a parameter uncertainty file is discussed earlier in this document. The
covariance matrix file written by REGERR employs the matrix file protocol discussed in the
next chapter of this document.

4.19 REGPRED

4.19.1 General

The purpose of REGPRED is to write a set PEST input dataset in which “regularised
nonlinear predictive uncertainty analysis” is carried out. This term is employed to embody
the nonlinear extension of the theory presented in Section 4.1.

Use of REGPRED is based on the premise that model calibration has been accomplished
through regularised inversion. Notionally, the regularised inversion process can be conceived
of as subdividing parameter space into two distinct subspaces – the “calibration solution
space” and the “calibration null space”. Parameter combinations within the former subspace
are informed by the calibration process; those within the latter subspace are not. The potential
errors associated with parameter combinations associated with the former subspace are a
function of measurement noise C(ε). The potential errors associated with the latter parameter
combinations are a function of the “innate variability” (possibly conditioned by
measurements or expert knowledge) of real-world parameters (i.e. system hydraulic
properties) as encapsulated in the C(p) matrix discussed extensively throughout this
addendum. For an uncalibrated model, it is this variability alone which determines parameter
and predictive uncertainty.

REGPRED writes a PEST input dataset in which PEST is asked to run in “predictive

Model Predictive Error Analysis 153

analysis” mode. In doing so it maximises or minimises a key model prediction while
maintaining the objective function at or below a user-specified value. In the REGPRED-
generated PEST control file, the objective function is defined in such a way that it
encompasses both of the constraints discussed above. That is, it constrains parameter
combinations lying within the calibration null space to respect the fact that they must be
realistic (at a certain probability level), at the same time as it ensures that the model does not
“become uncalibrated” by employing parameter sets that result in a mismatch between model
outputs and field measurements that is not justified by the noise content of those
measurements.

4.19.2 Theory

4.19.2.1 Calibration Null Space Constraints

Where regularisation is achieved through truncated singular value decomposition (TSVD),
and if the Marquardt lambda is zero, then the neat subdivision of parameter space into
estimable and non-estimable subspaces is exactly achieved. This is also accomplished if
parameter estimation is achieved through SVD-assist and if no Tikhonov regularisation is
employed in the SVD-assisted parameter estimation process. If regularisation is achieved by
other means, then the subdivision of parameter space into orthogonal estimable and non-
estimable subspaces is not exact but approximate. Use of REGPRED, however, assumes that
the approximation is good enough to allow formulation of parameter and model output
constraints enforced during the predictive analysis process, in terms of these subspace
concepts.

Moore and Doherty (2005) show that parameter error of a calibrated model (i.e. the
discrepancy between true model parameters p and estimated model parameters p) is
described by the equation:-

 p-p = (I – R)p - Gε (4.23)

where R and G are the resolution and “G” matrices calculated as a by-product of the
regularised inversion process.

Where regularised inversion is achieved through TSVD then:-

R = V1Vt
1

I-R = V2V2
t

and

 G = V1 E-1
1Vt

1XtQ

where the columns of V1 and V2 are the orthonormal eigenvectors of XtQX spanning the
calibration solution and null spaces respectively as discussed extensively in this addendum.
From (4.23) the covariance matrix of model parameter error C(p-p) can be calculated as:-

 C(p-p) = (I–R)C(p)(I-R)t + GC(ε)Gt (4.24)

Model Predictive Error Analysis 154

To explore the error range of a prediction, the constrained maximisation/minimisation
process to be described shortly focuses on p-p rather than p in the imposition of constraints
on parameters as these parameters are varied in order to maximise or minimise a prediction.
Moreover, constraints on parameters will only be applied in the calibration null space, for
constraints applied to model outputs will effectively constrain parameter combinations that
lie within the calibration solution space.

It is assumed that a set of calibrated parameters p already exists. The extent to which
deviations from this set are tolerable at a certain probability level is defined by C(p-p) of
equation 4.24. Where such deviations are along directions spanned by the null space,
tolerance of movement of p (and hence of p-p) is governed by the first term of equation 4.24;
the governing probability distribution in this case is C(p). To the extent to which changes in
parameter values are incurred along directions spanned by the solution space, it is the second
term of 4.24 which exerts these constraints; for this term the governing probability
distribution is C(ε), that is, the stochastic description of measurement noise.

REGPRED asks the user to nominate the number of dimensions comprising the solution
space to the current parameter estimation problem. Where parameter estimation is
implemented using SVD (without the Marquardt lambda), this will be equal to the number of
singular values at which truncation occurs. For other types or regularisation the user can
employ the MATSVD utility to undertake singular value decomposition of the R matrix for
the current problem (available through use of the RESPROC and RESWRIT utilities).
Inspection of the eigenvalue matrix forthcoming from this decomposition will reveal the
number of leading eigenvalues of R that are seriously nonzero. This number then defines the
dimensionality of the solution space. (Ideally, eigenvalues will be either one or zero. But to
the extent that the Marquardt lambda or Tikhonov regularisation impacts upon the parameter
estimation process, eigenvalues will differ from these ideals.)

REGPRED itself undertakes singular value decomposition of the resolution matrix R. In
doing so, it calculates U, S and V such that:-

 R=USVt
 (4.25)

For the current set of parameter values p employed in the predictive analysis
maximisation/minimisation process it computes:-

 g = U2
t(p-p) (4.26)

where U2 is comprised of the last m-k columns of U, k being the number of dimensions in the
solution space as provided by the user and m being the total number of parameters employed
in the parameter estimation exercise. U2 approximately spans the calibration null space
(exactly so for TSVD parameter estimation). The g matrix has m-k elements,

From (4.23):-

 g = U2
t (p-p) = U2

t (I – R)p – U2
t Gε (4.27)

The second term on the right side of 4.27 is assumed to be zero; it is in fact exactly zero
when regularisation in undertaken using TSVD. Hence the covariance matrix of g is given

Model Predictive Error Analysis 155

by:-

 C(g)= U2
t C(p-p)U2 = U2

t (I – R)C(p)(I – R)tU2 (4.28)

In the predictive analysis PEST control file written by REGPRED, all elements of the g
matrix are read as observations (the calculation of g through equation 4.26 is implemented
through a modification of the model to be described below). They are assigned an “observed
value” of zero and collectively assigned to an observation group of their own. This group is
then assigned the covariance matrix C(g) which is computed by REGPRED using equation
4.28 and written to a covariance matrix file ready for the use of PEST. Because the elements
of g thus comprise part of the observation dataset, deviations of g from zero as computed on
the basis of a given parameter set contribute to the objective function. Thus in constraining
the objective function during the maximisation/minimisation process implemented by PEST’s
predictive analyser, parameter movement within the calibration null space is also constrained.

As an alternative to the above procedure, instead of reading a resolution matrix, REGPRED
prompts the user for the contents of a singular value decomposition file. Such a file (written
by PEST when singular value decomposition is activated) contains the V matrix (i.e. the
matrix of eigenvectors of XtQX), provided the EIGWRITE variable in the “singular value
decomposition” section of the pertinent PEST control file was is set to 1. REGPRED extracts
V2 from this matrix (i.e. the set of eigenvectors spanning the calibration null space) and uses
V2

t in place of U2
t and U2

t (I – R) in the above procedure. Where regularised inversion was
implemented using TSVD, and thus (I - R) is equal to V2V2

t, all of these are equivalent.
Where regularised inversion was implemented using SVD-assist, with super parameters
defined on the basis of decomposition of XtQX (which is always the case unless external
super parameters are defined), this represents a fast way of obtaining the projections of model
parameters onto the null subspace and of thus isolating the contribution of the first term of
4.23 to parameter error. This is because, for SVD-assist, V2

tG is equal to zero (see equation
4.8b) and thus the second term of 4.23 becomes zero when pre-multiplied by V2

t.

4.19.2.2 Calibration Solution Space Constraints

Error in the estimation of those combinations of parameters that lie within the calibration
solution space arises solely from measurement noise. Thus a stochastic description of that
error rests ultimately on a stochastic description of measurement noise, i.e. C(ε).

Suppose that the estimated parameter set p when supplied to the model gives rise to model
outputs o. As parameters are altered through the prediction maximisation/minimisation
process a set of parameters p+δp may be calculated. These may, in turn, result in model
outputs o + δo. Now if δo is “unlikely” at a certain significance level in terms of
measurement noise, then o + δo will be statistically different from o at this same significance
level. Thus also at this same significance level, the alterations δp to the calibrated parameter
set p will be statistically unlikely. As a consequence it is then unlikely that p+δp can be
considered as an alternative to p at the same significance level, and so δp must be constrained
to prevent this.

This can be viewed in another way. Suppose that measurement noise for the current
calibration dataset is a stochastic realisation based on the covariance function C(ε). Let this

Model Predictive Error Analysis 156

realisation be denoted as ε1. Suppose also that “true” system behaviour is encapsulated in the
vector o so that the measurement dataset h is expressed as o+ε1. We have assumed that a
model can perfectly replicate true system behaviour if provided with a correct parameter set.
Suppose that this parameter set (possibly after projection onto the calibration solution space)
is p. Now if any parameter set p+δp gives rise to a set of model outputs o + δo to which the
same measurement noise is added, the resulting calibration dataset will be h + δo. If δo is a
statistically unlikely random variable as assessed using the covariance matrix C(ε), then h +
δo is significantly different from h and the parameter difference δp is thus discernable from
the calibration dataset, notwithstanding the noise content of this data. p+δp can thus not be
considered as a parameter set which “calibrates” the model at a certain significance level
because it results in a discernable difference in model outputs, at that same significance level.

Following this logic, when implementing maximization/minimization of a user-specified
prediction, constraints are not implemented directly on model-to-measurement misfit. Rather
they are imposed on the change in model outputs induced through the
maximization/minimization process. If this change is considered unlikely at a certain
significance level as assessed in terms of the covariance matrix C(ε) of measurement noise,
then so too are the parameters required to achieve this, at the same significance level.

4.19.2.3 Imposition of all Constraints

With the two sets of constraints now identified, the manner of their imposition can be
defined.

As will be discussed below, REGPRED assumes that the user has built a PEST control file in
which initial parameter values are optimised parameter values, and in which initial
observation values are model outputs calculated using these optimised parameter values. Any
regularisation information present within this file is ignored. However the presence of
regularisation in the preceding parameter estimation process is “felt” through the values of
the optimised parameters, and through use of the corresponding resolution matrix in defining
g of equation 4.27. It is assumed that this resolution matrix has already been calculated by the
user.

Observations within the existing PEST control file that are not regularisation observations are
transferred to the new PEST control file that is written by REGPRED. However, as
discussed, REGPRED assumes that their values are now perfectly matched to the initial
parameter values supplied in this file (this can be achieved using the OBSREP utility); thus
all residuals corresponding to all observations are initially zero. REGPRED assigns weights
to these observations which are the inverse of the uncertainties of the associated
measurements, measurement uncertainty being read from an “observation uncertainty file”.
(It should be noted here that observation weights as employed in the predictive analysis
process can thus be different from those employed in the parameter estimation process. The
benefit of using weights that are “tuned” to a particular parameter estimation problem has
been discussed in Moore and Doherty, 2005). Note that REGPREG, as presently
programmed, does not allow a covariance matrix to be used to characterise the uncertainty of
field measurements.

The observation dataset written to the new PEST control file is supplemented by the elements

Model Predictive Error Analysis 157

of g as defined in 4.27; the “observed value” or each element of g is zero. These new
observations are assigned to an observation group of their own, for which the C(g)
covariance matrix of 4.28 is employed for specification of uncertainty. As defined above g is
nonzero only where parameters depart from their initial values in combinations that lie within
the calibration null space.

An objective function is thus formed comprised of modified measurements and modified
parameter differences projected onto the calibration null space. The objective function is zero
at the commencement of the predictive analysis process and will only become non-zero as
parameters depart from their previously estimated values. If such departures take place in
combinations that lie within the calibration solution space, model outputs will be affected. If
they take place in combinations that lie within the calibration null space, the elements of g
will be affected. All observations are assigned weights (or a covariance matrix in the case of
g) which are in exact accord with their statistical distributions. If the noise associated with
measurements is Gaussian, and if C(p) is multiGaussian, the square root of the objective
function thus measures, in normalised observation space, the distance of departure of the
collective model output and g dataset from its optimum value of 0 (for which the objective
function is zero). The square root of the objective function is thus a normalized normal
variate and can be employed as a means of setting a significance level on these departures.
Thus, for example, if the objective function is raised to 9 for a certain parameter set, then the
distance, in normalised observation space, of the collective set of “observations” (including
the g component of these observations) from their optimum value of 0 is 3 standard
deviations. Thus at this point the “observations” are statistically different from their
optimised counterparts at the 99.7% confidence level. Given the definition of these
observations, this means that there is a very low likelihood that the current parameter set
satisfies the stochastic requirements of C(p) and that model output deviations calculated on
the basis of the current parameter set satisfy the stochastic requirements of C(ε); thus any
prediction made on the basis of that parameter set is equally unlikely.

4.19.3 Preparations for a REGPRED Run

4.19.3.1 Obtaining the Resolution Matrix

Prior to running REGPRED a regularised inversion exercise must have been carried out.
Regularisation could have been achieved using pure TSVD (in which case PEST was run in
“estimation” mode), using Tikhonov constraints, and/or using SVD-assist. It is assumed that
the RESPROC utility has been run after this, and that RESWRIT has been run to produce a
resolution matrix, stored in file of its own using the matrix file format discussed in Section 5
of this addendum. Note that if regularised inversion is carried out using SVD-assist, a second
set of parameter sensitivities may have been calculated based on optimised parameters in
order to provide more accuracy in computation of the resolution matrix. See documentation
of RESPROC for more details.

 4.19.3.2 Building an “Optimised PEST Control File”

The next task, prior to running REGPRED, is to build a PEST control file in which initial
parameter values are optimal, and in which “observations” are in fact the set of model outputs
corresponding to these optimised parameters. The former can be achieved using the PARREP

Model Predictive Error Analysis 158

utility (and may have been done already to calculate sensitivities on the basis of optimised
parameters after an SVD-assist run as discussed above). The second of the above tasks can be
carried out using OBSREP.

After having run both of these programs an “optimised PEST control file” will have been
produced. If NOPTMAX is set to 0 in this file and PEST is run in order to carry out just one
model run, that model run should show a measurement objective function of zero.

There is no need to remove regularisation observations and/or regularisation prior
information from this file, for REGPRED will take care of this. However the following
should be noted.

1. If the optimised PEST control file does not instruct PEST to run in “regularisation”
mode (as inherited from the files from which it was built), then the name of no
observation group should begin with the string “regul”.

2. It is possible that, during the regularised inversion process, one or more
“observations” were “carried along” (with weights of zero) talking no part in the
parameter estimation process but, were in fact model predictions of interests. This
strategy allows calculation of derivatives of these predictions with respect to all
model parameters. If this is the case, these “observations” may have been assigned to
an observation group of their own. Unless there is only one such “observation” these
observations should not be assigned to an observation group named “predict”, as this
observation group has special significance when conducting predictive uncertainty
analysis. If, however, there is only one observation assigned to the observation group
“predict”, REGPRED will treat this as the prediction whose task it is for the
predictive analysis process to maximise/minimise when it builds the predictive
analysis PEST control file.

4.19.4 Running REGPRED

4.19.4.1 REGPRED Dialogue

REGPRED commences execution with the prompt:-
 Enter name of existing PEST control file:

Provide the name of an existing PEST control file containing optimised parameter and
observation values; if you omit the .pst extension, REGPRED will automatically add this for
you. Note that if parameter estimation was carried out using SVD-assist, this should not be a
super-parameter PEST control file. Rather it should be a base parameter PEST control file
(with optimised parameter and observation values as discussed above).

After you have provided the name of this file, and after REGPRED verifies that this file
exists, it prompts:-
Does it contain optimised parameter and observation values? [y/n]:

If you answer “n” REGPRED’s reaction will be swift and decisive:-
 Then use PARREP and OBSREP to build such a PEST control file.

Model Predictive Error Analysis 159

whereupon it will immediately cease execution.

REGPRED’s next prompt is:-
 Use resolution or SVD matrix for null space projection? [r/s]:

If the response to the above prompt is “r”, REGPRED prompts:-
 Enter name of corresponding resolution matrix file:

As mentioned above, this resolution matrix file should have been produced by running
RESPROC followed by RESWRIT after the PEST regularised inversion run through which
optimised parameter values (and optimised model outputs) were obtained.

REGPRED next asks:-
 Enter dimensions of solution space:

This question may sometimes be difficult to answer. If regularised inversion had previously
been carried out using pure TSVD (with zero Marquardt lambda) in which the truncation
limit, rather than ratio of highest to lowest eigenvalue, was set as the cut-off criterion, the
answer to the above question is simply the number of eigenvalues specified before truncation.
If the eigenvalue ratio was instead employed, then the dimensionality of the solution
subspace may be available from the “number of singular values used in solution” specifier
recorded in the svd file by PEST. Note however that this may vary from iteration to iteration.
Use of that pertaining to the last iteration is probably the best idea.

A good way to determine a suitable response to this prompt is to use the MATSVD utility to
undertake singular value decomposition of the R matrix. Then inspect the list of eigenvalues
forthcoming from this exercise. Select the eigenvalue number at which eigenvalues start to
become very low. (If the R matrix was produced using pure TSVD, or SVD-assist without
Tikhonov regularisation and zero lambda, all eigenvalues should be either one or zero.)

If, on the other hand, you had instructed REGPRED to read an SVD matrix instead of a
resolution matrix, it will prompt:-
 Enter name of SVD matrix file:-

This must be a file with an extension of “.svd” produced during a previous PEST run in
which PEST was instructed to use singular value decomposition as a solution device. If the
EIGWRITE variable was set to 1 on that run, the V matrix of eigenvectors of XtQX is
recorded for every iteration in this file. REGPRED next asks:-
 Get SVD for which iteration number? <Enter if 1>:

If the SVD run was undertaken for the purposes of model calibration, enter the number of the
last iteration undertaken. However if PEST was only run for 1 iteration, purely for the sake of
obtaining this matrix, then a matrix will be produced only for iteration number 1. See below
for a way in which this can be easily achieved based on existing sensitivities even if TSVD
had not been used in the previous calibration exercise. REGPRED’s next prompt is:-
 Enter dimensions of solution space:

If calibration was undertaken using SVD, this will correspond to the “number of singular
values used in solution” pertaining to the last optimisation iteration. However if PEST was
run in SVD mode for 1 iteration purely to obtain the V matrix, prior to using REGPREG after

Model Predictive Error Analysis 160

an SVD-assist run, it will correspond to the number of super parameters employed in the
SVD-assist run.

Next, whether REGPRED reads a resolution matrix of SVD file, it prompts for the names of a
parameter uncertainty file and an observation uncertainty file:-
 Enter name of parameter uncertainty file:
 Enter name of observation uncertainty file:

See documentation of program PARAMERR for the format of these files. The purpose of
these files is to supply the C(p) and C(ε) matrices, the roles of these matrices in the predictive
analysis process being described above. Note that if parameters are log-transformed through
the parameter estimation process, then pertinent elements of C(p) must relate to the logs of
these parameters. Note also that if the observation uncertainty file cites a PEST control file
(because the weights in this file are the inverse of measurement uncertainties), it must not be
the same PEST control file whose name was supplied to REGPRED following the first of its
prompts. However it must provide uncertainty information for all observations and prior
information equations cited in this PEST control file, except for those which belong to
regularisation observation groups.

REGPRED next prompts for the name of the file that it must write:-
 Enter name for new predictive analysis PEST control file:

This new PEST control file will exclude any regularisation observations and/or prior
information cited in the original PEST control file. In this new PEST control file, PEST will
be instructed to run in predictive analysis mode. It will also include a “predictive analysis”
section containing control variables for the predictive analysis process. One of these variables
is NPREDMAXMIN, which informs PEST whether the prediction of interest is to be
maximised or minimised. In order to know this, REGPRED prompts:-
 Maximise or minimise prediction? [a/i]:

Then it asks:-
 Enter value for PDO (<Enter> if 9.0):

As is explained in the main PEST manual, PD0 is the objective function constraint imposed
through the maximisation/minimisation process. A value of 9.0 is equivalent to three standard
deviations (because it is the square of 3) and hence to a two-sided confidence level of about
99.7% for normally distributed variables.

If the PEST control file whose name as supplied to REGPRED contains an observation group
named “predict”, and if that observation group contains a single observation, REGPRED next
prompts:-
 Treat single member "obs" of observation group "predict"
 as "the prediction" in new PEST control file? [y/n]:

where “obs” is replaced by the observation actually identified in the PEST control file. If the
answer to this question is “y”, REGPRED then asks:-
 Incorporate predictive noise in pred. anal. process [y/n]:

See the documentation of alterations to PEST’s predictive analyser in another part of this
addendum. As explained there, the existence of “predictive noise” can be incorporated into

Model Predictive Error Analysis 161

the predictive maximisation/minimisation process undertaken by PEST. If this is done, the
PREDNOISE variable in the “predictive analysis” section of the PEST control file must be
set to 1, and a non-zero weight must be supplied to the prediction comprising the single
member of the observation group “predict”. This weight must be the inverse of the standard
deviation of predictive noise.

4.19.4.2 The Modified Model

The model run by PEST as part of the predictive analysis process must compute g of equation
4.26 on the basis of current model parameter values. REGPRED modifies the model to be
able to do this. On the assumption that the original model is a batch or script file (REGPRED
will cease execution with an error message if the extension of the model filename is not
“.bat”), REGPRED adds commands to the beginning of this file as it writes a new model
batch file named regpredbat.bat which the new PEST control file will employ to run the
model.

A template file named par###.tpl is added to the PEST input dataset, its corresponding model
input file being named par###.mat. This contains the vector of current parameters p; note
that only adjustable parameters are written to this file. The model then runs the VECLOG
utility to take the logs of log-transformed parameters, producing a file named parlog###.mat.
The transformation matrix file employed by VECLOG (which is written by REGPRED) is
named partran###.mat.

A difference is then taken between current (transformed) parameter values p and optimised
parameter values p. The latter are stored in file refpar###.mat, which is written by
REGPRED; note that the values of log-transformed parameters are log-transformed before
storage in this file. Vector differencing is undertaken by the MATDIFF utility, the p-p vector
is written to a file named pardiff###.mat.

The MATPROD utility is used to compute g using equation 4.26. U2
t
 (or V2

t if the SVD
option is used) from that equation is stored in file proj###.mat by REGPRED. g itself is
written to file projdiff###.mat by MATPROD. This file is then read by a new instruction file
(written by REGPRED) named proj###.ins.

The elements of g are assigned to observations named projdiff1, projdiff2 etc in the new
PEST control file written by REGPRED. These in turn are assigned to the observation group
projdiff to which the covariance matrix C(g) (computed using 4.28) is assigned in the
“observation groups” section of the new PEST control file written by REGPRED.

It is important to ensure that the VECLOG, MATDIFF and MATPROD executables reside in
a directory cited in the PATH environment variable (or reside in the current working
directory). If running Parallel PEST, it is important to ensure that these executables are
transferred to slave machines.

4.19.5 Some Notes

The following aspects of the input dataset written by REGPRED should be carefully noted.

1. If, in the original PEST control file whose name is supplied to REGPRED, there is an

Model Predictive Error Analysis 162

observation group named “predict”, and if it contains more than one member,
REGPRED will cease execution with an appropriate error message. Alternatively, if
there is such a group and it contains only one member, REGRPRED will prompt (as
shown above) for permission to treat this one member as the prediction whose task it
is for PEST to maximise/minimise in the forthcoming predictive analysis process. If
the user does not want this, REGPRED will ask him/her to assign that observation to
another observation group. If there is no observation group named “predict” in the
original PEST control file REGPRED will create one. It is then the user’s task to add
an actual prediction to this PEST control file. A new instruction file (or an alteration
made to an existing one) will also be required in order to provide PEST with the
means to read this new prediction from the model output dataset. REGPRED issues a
warning to this effect before finishing execution.

2. As discussed above, observation and prior information weights are not transferred
from the original PEST control file to the new one. Rather observation weights are
assigned on the basis of observation uncertainties as supplied to REGPRED through
an observation uncertainty file. However if any observation or prior information
equation is assigned a weight of zero in the original PEST control file, it will also be
assigned a weight of zero in the new PEST control file as this is taken as an indication
that the user is not interested in this observation.

3. All regularisation observations and prior information equations are eliminated from
the new PEST control file written by REGPRED. On many occasions of PEST usage
regularisation constraints are limited solely to prior information. The elimination of
these prior information equations from the new PEST control file has no adverse
consequences. However where observations, rather than prior information equations,
are eliminated from the PEST control file because they belong to a regularisation
group, pertinent instruction files comprising the PEST input dataset need to be deleted
or modified. It is the user’s responsibility to undertake this task (REGPRED reminds
the user of this before ceasing execution).

4. If a “singular value decomposition” section exists in the original PEST control file, it
is removed.

5. Irrespective of the NOPTMAX (current number of iterations) setting in the original
PEST control file, a NOPTMAX setting of 50 is provided to the new PEST control
file. (This can prevent the user from severe disappointment if, on returning to his/her
computer next morning, he she finds that PEST has run the model only once in order
to calculate the objective function, or that PEST ran for only one iteration in order to
calculate parameter sensitivities because he/she forgot to alter the NOPTMAX
setting.)

6. Predictive analysis control variables written to the “predictive analysis” section of the
new PEST control file by REGPRED are conservative. A line search is instigated, the
control variables for this line search being such as to sample the line densely enough
to detect the existence of a possible fall in the objective function followed by a rise
before intersection of the PD0 contour. Also, convergence criteria are tight. If these
settings are not suitable, the user should alter them him/herself.

Model Predictive Error Analysis 163

When PEST is run on the basis of the new PEST control file (it may be necessary to add
the prediction to this file first as discussed above) the initial objective function should be
zero. Occasionally PEST may cease execution after the first iteration, saying that the “phi
gradient is zero”. If this is the case, perturb the initial value of one of the parameters by a
slight amount and re-commence PEST execution.

4.19.6 Using the SVD Matrix Option

As mentioned above, use of the SVD-matrix option rather than the resolution matrix option,
can be advantageous where the calibration process was undertaken using SVD-assist based
on PEST-determined super parameters. In this case, use of a V2 matrix in place of U2

t (I – R)
ensures that the second term of equation 4.23 makes no contribution to the null space
component of computed error variance. To obtain an SVD file (which must be based on base
parameters) under these circumstances, undertake the following steps. Note that these steps
assume that a JCO file already exists for the base parameter file, and that PEST-determined
super parameters, rather than user-supplied super parameters, were employed in the
calibration process.

1. Copy the base parameter pest control file to another file.

2. Set NUMLAM to 1 and RLAMBDA1 to zero in that file.

3. Remove all regularisation observations and prior information.

4. Add a “singular value decomposition” section to this file. Be sure to set EIGWRITE
to 1.

5. Set NOPTMAX to 1.

6. Use the JCO2JCO utility to create a JCO file corresponding to this new PEST control
file from the original JCO file pertaining to the base PEST control file.

7. Start PEST on the basis of the new PEST control file using the “/i” switch; when
prompted for the name of a JCO file, supply the name of the JCO file just created by
JCO2JCO. PEST will then undertake three model runs – one at the start of the
process, one to test an upgrade vector, and one on the basis of “best fit parameters”.
However all model runs normally employed for calculation of the Jacobian matrix
will be dispensed with as parameter sensitivities are read from the existing JCO file.

4.20 PREDUNC1

4.20.1 Theory

PREDUNC1 computes predictive uncertainty conditional upon the acquisition of data
comprising the calibration dataset. It can be used interchangeably with PREDVAR1.

Suppose that the innate variability of system properties p is described by the covariance
matrix C(p). Suppose also that the sensitivity of a prediction s to system parameters p is
represented by the vector y. Thus if the model is linear, the relationship between the

Model Predictive Error Analysis 164

prediction s and parameters p is described by the equation (ignoring offsets):-

 s = ytp (4.29)

The uncertainty of that prediction can be characterised by a variance σ2
s computed as:-

 σ2
s = ytC(p)y (4.30)

Suppose that the vector h represents a calibration dataset whose relationship to parameters is
given by:-

 h = Xp + ε (4.31)

where X is a sensitivity matrix. Combining (4.31) and (4.29) we have:-

 















=







ε
p

IX
0y

h

ts
 (4.32)

and thus, using standard matrix relationships for propagation of covariance:-

()
()

() ()
() () ()







+
=

























=
















εXpXypX
Xpyypy

I
Xy

ε
p

IX
y

h

CCC
CC

0C0
0C0

C

t

tt

tts

 (4.33)

Now suppose that an arbitrary vector x is partitioned into two separate parts x1 and x2. That
is:-

 x = 








2

1

x
x

 (4.34)

Let C(x), the covariance matrix of x, be correspondingly partitioned as:-

 C(x) = 








2221

1211

CC
CC

 (4.35)

Suppose further that the elements of x2 become known. Then, if there is correlation between
at least some members of x2 and some members of x1 (resulting in non-null C12 and C21
submatrices), the conditioned C11matrix C´11 is calculable as:-

 C´11 = C11 – C12C-1
22C21 (4.36)

provided x has a multi-Gaussian probability distribution. Applying this to equation 4.33, the
conditional variance of our prediction s given the acquisition of calibration data h, is:-

Model Predictive Error Analysis 165

() () () ()[] ()ypXεXpXXpyypy CCCCC 1tttt2 −
+−=sσ (4.37)

PREDUNC1 computes σ2
s of equation 4.37. Note that ytC(p)y (the first term of equation

4.37), is the pre-calibration uncertainty of the prediction s.

Using PREDUNC1

Use of PREDUNC1 is very similar to that of PREDVAR1. However a list of singular values
is not required for computation of σ2

s using equation 4.37; hence singular values are not
requested.

Like PREDVAR1, PREDUNC1 commences execution with the prompts:-
 Enter name of PEST control file:

and
 Enter observation reference variance:

As is done by PREDVAR1, PREDUNC1 obtains statistics of measurement noise (i.e. the
C(ε) matrix) from the user-nominated PEST control file. Where measurement weights are
employed in this file, PREDUNC1 assumes that the square of each such weight is
proportional to the inverse of the standard deviation of the noise associated with each
respective measurement, the proportionality constant being the reference variance σ2

r. That
is, the actual standard deviation of measurement noise is presumed to be σr times the inverse
of the weight of each measurement, where σr is the square root of the reference variance as
supplied by the user. Where a covariance matrix is supplied for some or all observations, this
same reference variance is assumed to apply.

PREDUNC1’s next prompt is:
 Enter name of parameter uncertainty file:

in response to which the name of an appropriate file containing the C(p) matrix must be
supplied. PREDUNC1’s next prompt is:-
 Enter name of predictive sensitivity matrix file:

The response to this prompt must be the name of a file written by a program such as
JROW2VEC which lists the sensitivity of a prediction to each adjustable parameter. (Note
that the ordering of these parameters in the predictive sensitivity file does not need to be the
same as that in the PEST control file; nor does it matter if extra parameters are cited in this
file.)

PREDUNC1 next computes the pre- and post-calibration uncertainty of the prediction, and
writes these to the screen.

Unlike the PREDVAR utilities, PREDUNC does not compute the separate contributions to
predictive error variance made by the calibration solution and null spaces, for no singular
value decomposition is undertaken of the weighted sensitivity matrix. However contributions
made by these spaces can be computed in an indirect way by increasing the weights assigned
to all measurements. When measurement weights are very high, the resulting predictive
uncertainty is attributable solely to nonuniqueness of solution of the inverse problem; that is,
it is a direct outcome of the existence and size of the calibration null space.

Model Predictive Error Analysis 166

4.21 PREDUNC4
PREDUNC4 is to PREDUNC1 what PREDVAR4 is to PREDVAR1. That is, it computes the
predictive uncertainty where groups of parameters are sequentially removed from the
parameter estimation process, the names of these parameters being supplied in a “parameter
type list file”. However, unlike PREDVAR4, it does not prompt for a singular value list file,
for the means by which predictive uncertainty is calculated is the same as that employed by
PREDUNC1, this not requiring that singular value decomposition of the weighted sensitivity
matrix be undertaken.

The user is therefore referred to documentation of PREDVAR4 for usage details of
PREDUNC4.

4.22 PREDUNC5
PREDUNC5 is to PREDUNC1 what PREDVAR5 is to PREDVAR1. That is, it computes the
predictive uncertainty where groups of measurements are sequentially added or subtracted
from the calibration dataset, the names of these observations being supplied in an
“observation type list file”. However, unlike PREDVAR5, it does not prompt for a singular
value list file, for the means by which predictive uncertainty is calculated is the same as that
employed by PREDUNC1, this not requiring that singular value decomposition of the
weighted sensitivity matrix be undertaken.

The user is therefore referred to documentation of PREDVAR5 for usage details of
PREDUNC5.

Matrix Manipulation Programs 167

5. Matrix Manipulation Programs
5.1 General
A series of matrix manipulation programs has been written to assist in carrying out
uncertainty analysis in the post-processing of regularised PEST runs. They allow processing
of a more general nature to be undertaken than that provided by the utilities described in the
previous section. It is hoped that they thus provide the user with a certain degree of flexibility
in accommodating the demands of their particular modelling applications.

All of these utilities read and write “matrix files” whose format follows that described in
Section 4.4.3.

5.2 COV2COR
COV2COR calculates a correlation coefficient matrix from a covariance matrix. It reads the
former from a file which observes matrix file format and writes the latter to a file in the same
format. The matrix in the former file must satisfy the following criteria.

1. It must be square.

2. None of its diagonal elements must be zero or less.

3. Its row and column names must be identical. (The existence of non-identical row and
column names is only possible if the ICODE value of the matrix file holding the first
matrix is 2.)

COV2COR is run using the command:-
cov2cor covmatfile cormatfile

where:-

covmatfile is the name of the matrix file holding the covariance matrix, and

cormatfile is the name of the file to which the corresponding correlation
coefficient matrix is written.

5.3 COVCOND
Suppose that an arbitrary vector x is partitioned into two separate parts x1 and x2. That is:-

 x = 








2

1

x
x

Let C(x), the covariance matrix of x, be correspondingly partitioned as:-

Matrix Manipulation Programs 168

 C(x) = 








2221

1211

CC
CC

Suppose further that the elements of x2 become known. Then, if there is correlation between
at least some members of x2 and some members of x1 (resulting in non-null C12 and C21
submatrices), the conditioned C11 matrix C´11 is calculable as:-

 C´11 = C11 – C12C-1
22C21

COVCOND computes C´11, that is, the conditional covariance matrix of a subset of random
variables, based on the premise that the complimentary subset becomes known. It is run using
the command:-
 covcond covfile1 listfile covfile2

where:-

 covfile1 contains a covariance matrix (i.e. C(x) in the above explanation);

 listfile contains a list of random variables whose values are assumed known,
and

 covfile2 contains the conditional covariance matrix based pertaining to the
remaining variables (i.e. C´11 in the above explanation).

It will be recalled from elsewhere in this manual, that a PEST-compatible matrix file includes
a list of row and column names. For a covariance matrix file row and column names will be
the same; presumably, these will be the names of random variables whose stochastic structure
is described by the covariance matrix. The listing file (this being the second COVCOND
command line argument) must contain a list comprised of the names of some of these
variables, written one to a line. No header, or other information, is required in this file.

5.4 JCO2MAT
JCO2MAT reads a PEST-produced Jacobian matrix file. It re-writes the matrix contained
therein in the same matrix file format as that employed by other utility programs documented
herein. The Jacobian matrix is then amenable to manipulation using these utilities.

JCO2MAT is run using the command:-
jco2mat jcofile matfile

where:-

jcofile is the name of a Jacobian matrix file, and

matfile is the name of the matrix file to which the Jacobian matrix is to be
written.

Matrix Manipulation Programs 169

5.5 JROW2MAT
JROW2MAT extracts a row of a Jacobian matrix from a PEST unformatted “Jacobian matrix
file” and writes that row as a 1×NPAR matrix to a standard matrix file, where NPAR is the
number of (adjustable) parameters featured in the Jacobian matrix file. Note that the expected
extension for a Jacobian matrix file is “.jco”.

JROW2MAT is run using the command:-
jrow2mat jcofile obsname matfile

where:-

jcofile is the name of a Jacobian matrix file,

obsname is the name of an observation or prior information item featured in that
file, and

matfile is the name of the matrix file to which the 1×NPAR matrix is to be
written.

JROW2MAT simply extracts the nominated row of the Jacobian matrix and re-writes that
row in appropriate format. The “row name” of the row is that of the extracted observation or
prior information equation, while “column names” are the names of parameters featured in
the Jacobian matrix file.

The reader is reminded that a PEST unformatted Jacobian matrix file can be viewed in ASCII
format using the JACWRIT utility.

5.6 JROW2VEC
JROW2VEC performs the same function as JROW2MAT followed by MATTRANS. That is,
it extracts a user-nominated row from a Jacobian matrix. However instead of writing the
extracted row in the form of a row matrix, it writes it as a column matrix. Thus, if desired, the
extracted set of observation or predictive sensitivities is immediately useable by MATQUAD
for evaluation of predictive error variance.

JROW2VEC is run using the command:-
jrow2vec jcofile obsname matfile

where:-

jcofile is the name of a Jacobian matrix file,

obsname is the name of an observation or prior information item featured in that
file, and

matfile is the name of the matrix file to which the NPAR×1 matrix is to be
written.

Matrix Manipulation Programs 170

5.7 MAT2SRF
MAT2SRF rewrites a matrix in SURFER grid file format. This is a particularly useful device
for viewing the resolution matrix. A highly diagonally dominant resolution matrix indicates
(as the name suggests) good “resolution” of parameters through the parameter estimation
process. A “blurry” resolution matrix which is only mildly diagonally dominant indicates
inability of the calibration process to capture parameterisation detail, this arising from
inadequacies in the information content of the calibration dataset as an outcome of data
scarcity, data noise, or both.

MAT2SRF can read any matrix file which adheres to the format documented in Section 4.4.3
of this addendum.

MAT2SRF is run using the command:-
 mat2srf matfile gridfile [threshold]

where:-

matfile is the name of a matrix file;

gridfile is the name of a SURFER grid file; and

threshold is a blanking threshold.

Upon commencement of execution, MAT2SRF reads the matrix contained in the matrix file.
It then rewrites the matrix contained therein in SURFER grid file format to file gridfile. Note
that MAT2SRF automatically adds an extension of “.grd” to this filename unless it possesses
this extension already.

MAT2SRF provides the option of blanking matrix elements whose absolute values are above
a certain threshold. This threshold is optionally supplied as the last element of the MAT2SRF
command line. If it is omitted, no such blanking takes place unless a matrix element has an
absolute value greater than 1.70141e38, this being SURFERs “natural” blanking threshold.

When a matrix is plotted (and shaded/contoured) in SURFER, rows and columns of this
matrix appear in the same order in the SURFER plot as they do in the numerical
representation of the matrix in the corresponding matrix file.

5.8 MATADD
MATADD adds one matrix to another. It is run using the command:-
 mattadd matfile1 matfile2 matoutfile

where matfile1 and matfile2 are files containing the matrices to be added, while matoutfile
contains the file to which MATADD writes the summation of the two supplied matrices.

The following should be noted:-

1. Two supplied matrices must have the same number of rows and columns if they are to
be added.

Matrix Manipulation Programs 171

2. If row and column names differ in substance or in order between the two supplied
matrix files, MATADD will transfer those provided in matfile1 to the summation
matrix recorded in file matoutfile. However it will warn the user of the name-
incompatibility existing between the matrices contained in matfile1 and matfile2.
Note that MATADD will NOT re-order the rows and columns of one matrix in order
to ensure correspondence with that of another matrix. If the number of rows and
columns are the same in each matrix file, the matrices are simply added, and a
warning message is written to the screen.

5.9 MATCOLEX
MATCOLEX stands for MATrix COLumns EXtract. Using this utility, the first ncol columns
are extracted from a matrix and rewritten as a new matrix to a new matrix file. MATCOLEX
is run using the command:-
 MATCOLEX matfile ncol matoutfile

where matfile contains an arbitrary rectangular m×n matrix. A new m×ncol matrix is written
to the matrix file matoutfile.

If ncol is supplied as negative, then the last ncol columns of a matrix are extracted; these
columns are written to the new matrix in reverse order.

5.10 MATDIAG
MATDIAG extracts the diagonal of a matrix, writing it as a vector (i.e. a one-column matrix).
However certain conditions must be met for MATDIAG to do its job. These are:

1. the matrix must be square;

2. the row and column names of the matrix must be the same.

MATDIAG is run using the command:-
 MATDIAG matfile1 matfile2

where matfile1 is the name of the file holding the diagonal matrix, and matfile2 is the name
of the matrix file to which the extracted diagonal elements are written. The rows of this one-
column matrix are given the same names as the rows of original matrix. Its single column is
given the name “col1”.

5.11 MATDIFF
MATDIFF is identical to MATADD except for the fact that it undertakes matrix differencing
rather than matrix addition.

5.12 MATINVP
MATINVP finds the inverse of a positive definite matrix. It is run using the command:-
 matinvp matfile1 matfile2

Matrix Manipulation Programs 172

where matfile1 contains the matrix to be inverted and matfile2 contains the matrix to which
the inverse is written. If the matrix contained in matfile1 is not positive definite, then
MATINVP ceases execution with an appropriate error message.

5.13 MATJOINC
MATJOINC reads two matrices which have the same number of columns, and for which
corresponding column names are the same in each matrix. It forms a new matrix, by joining
these two matrices in the column direction. Thus suppose that the two existing matrices are
named A and B. MATJOINC combines these matrices into a single matrix C of the form:-









=

B
A

C

MATJOINC is run using the command:-
 matjoinc matfile1 matfile2 matfile3

where:-

matfile1 is the name of a matrix file holding the first matrix,

matfile2 is the name of a matrix file holding the second matrix, and

matfile3 is the new matrix file.

The following should be noted:-

1. MATJOINC will not join two existing matrices if any column name in the first
matrix differs from that of its corresponding column in the second matrix.

2. MATJOINC will not join two existing matrices if any row name in the first matrix
is the same as a row name in the second matrix (for then the resulting matrix
would have duplicate row names).

3. Row and column names from the existing matrices are transferred to the new
matrix.

4. If the resulting, combined, matrix is a diagonal matrix, MATJOINC writes the
joined matrix in diagonal matrix format for the sake of storage efficiencies.

5.14 MATJOIND
MATJOIND reads two matrices of arbitrary dimensions. It then forms a new matrix in which
the two are combined in a diagonal sense. Thus suppose that the two existing matrices are
named A and B. MATJOIND combines these matrices into a single matrix C of the form:-









=

B0
0A

C

Matrix Manipulation Programs 173

 MATJOIND is run using the command:-
 matjoind matfile1 matfile2 matfile3

where:-

matfile1 is the name of a matrix file holding the first matrix,

matfile2 is the name of a matrix file holding the second matrix, and

matfile3 is the new matrix file.

The following should be noted:-

1. MATJOIND will not join two existing matrices if any column name in the first
matrix is the same as a column name in the second matrix.

2. MATJOIND will not join two existing matrices if any row name in the first matrix
is the same as a row name in the second matrix.

3. Row and column names from the existing matrices are transferred to the new
matrix.

4. If the resulting, combined, matrix is a diagonal matrix (which can only occur if
the two existing matrices are themselves diagonal), MATJOIND writes the joined
matrix in diagonal matrix format for the sake of storage efficiencies.

5.15 MATJOINR
MATJOINR reads two matrices which have the same number of rows, and for which
corresponding row names are the same in each matrix. It forms a new matrix, by joining
these two matrices in the row direction. Thus suppose that the two existing matrices are
named A and B. MATJOINR combines these matrices into a single matrix C of the form:-

[]BAC =

MATJOINR is run using the command:-
 matjoinr matfile1 matfile2 matfile3

where:-

matfile1 is the name of a matrix file holding the first matrix,

matfile2 is the name of a matrix file holding the second matrix, and

matfile3 is the new matrix file.

The following should be noted:-

1. MATJOINR will not join two existing matrices if any row name in the first matrix
differs from that of its corresponding row in the second matrix.

Matrix Manipulation Programs 174

2. MATJOINR will not join two existing matrices if any column name in the first
matrix is the same as a column name in the second matrix (for then the resulting
matrix would have duplicate column names).

3. Row and column names from the existing matrices are transferred to the new
matrix.

4. If the resulting, combined, matrix is a diagonal matrix, MATJOINR writes the
joined matrix in diagonal matrix format for the sake of storage efficiencies.

5.16 MATORDER
The purpose of MATORDER is to re-order the rows and columns of a matrix. It is run using
the command:-
 MATORDER matfile1 matfile2 matoutfile

where:-

matfile1 is the name of a matrix file holding the matrix to be re-ordered,

matfile2 is the name of the “reordering matrix”, and

matfile3 is the name of a new matrix file which will hold the reordered matrix.

MATORDER commences execution by reading the matrix contained in matfile1. It then
reads matfile2. If the number of rows and columns in the matfile2 matrix is not the same as
the number of rows and columns in the matfile1 matrix, MATORDER ceases execution with
an appropriate error message. MATORDER then verifies that there are no duplicate column
names in each of the matfile1 and matfile2 matrices, and that there are also no duplicate row
names.

Next MATORDER reorders the matfile1 matrix such that its rows have the same order as the
rows of the matfile2 matrix, and such that its columns have the same order as the columns of
the matfile2 matrix. It then records the re-ordered matfile1 matrix in file matoutfile.

It is important to note that the matrix in file matfile2 is not actually used by MATORDER;
only the row and column names are used. Thus any matrix can be employed. If the matrix has
a large number of rows and/or columns, and if file matfile2 is being prepared by hand, don’t
forget the shorthand manner in which numbers can be read using the free field formatting
convention. For example each row of a 1000-column nul matrix 0 can be represented using
the format “1000*0.0”.

5.17 MATPROD
MATPROD calculates the product of two matrices. That is, it calculates C where C=AB.
Note that calculation of C is only possible if the number of columns in A is equal to the
number of rows of B. Ideally the names of the rows of A should be the same as the names of
columns of B. MATPROD will not object if this is not the case; however it will issue a
warning.

Matrix Manipulation Programs 175

MATPROD is run using the command:-
MATPROD matfile1 matfile2 matoutfile

where matfile1 and matfile2 contain the A and B matrices respectively; matoutfile will
contain the C matrix upon completion of MATPROD execution.

5.18 MATQUAD
MATQUAD evaluates the quadratic form ytMy where y is a vector and M is a square matrix.
It is run using the command:-
 matquad vecfile matfile outfile

where:-

vecfile is the name of a matrix file holding the vector y,

matfile is the name of a matrix file holding the matrix M, and

outfile is an output matrix file.

The following should be noted:-

1. MATQUAD requires an input vector y. However this vector is actually read as a n×1
matrix from a standard matrix file.

2. Even though ytMy is a scalar, MATQUAD writes this scalar as a 1×1 matrix to its
output matrix file outfile. However it also writes it to the screen.

3. MATQUAD will issue a warning message if the names of the rows of the vector y are
not the same as those of the rows of M. It will also issue a warning message if the
rows of M are named differently to the columns of M.

5.19 MATROW
MATROW extracts a row of a matrix. It then re-writes that row as a “row matrix” to a matrix
file.

An interesting usage of MATROW is the extraction of a row of the resolution matrix.
MATTRANS can then be used to write row entires in the vertical direction rather than the
horizontal direction. For those parameters which correspond to pilot points (or other point-
based geographical entities) geographical coordinates are easily pasted in adjacent columns.
Griding and contouring of this data then allows graphical viewing of the averaging process
that attends the estimation of spatial model parameters.

MATROW is run using the command:-
 matrow matfile rowname matoutfile

where:-

matfile is the name of a matrix file,

Matrix Manipulation Programs 176

rowname is the name of a row of the matrix contained in matfile, and

matoutfile is the name of a new matrix file containing the nominated row of the
first matrix.

5.20 MATSMUL
MATSMUL multiplies a matrix by a scalar. It is run using the command:-

matsmul matinfile number matoutfile

 where:-

matinfile is a file containing a matrix,

number is the matrix scalar multiplier, and

matoutfile is the file to which the new matrix will be written.

5.21 MATSPEC
MATSPEC lists some useful matrix specifications to a nominated text file. As time goes on
the matrix characteristics that are recorded to this file will expand. However at the time of
writing, only the following information is recorded:-

1. number of rows and columns;

2. row/column numbers/names of highest and lowest matrix elements;

3. row/column numbers/names of highest and lowest absolute matrix elements;

4. row/column numbers/names of highest and lowest diagainal elements;

5. row/column numbers/names of highest and lowest absolute diagonal elements.

MATSPEC is run using the command:-
matspec matfile outfile

where matfile is the name of a file holding a matrix, and outfile is the name of the text file to
which matrix properties are written.

5.22 MATSVD
MATSVD undertakes singular value decomposition of an arbitrary m × n square matrix.
Suppose that this matrix is named A. Then singular value decomposition of A leads to
computation of the matrices U, S and V where:-

 A = USVt

In the above equation U is an m × m orthogonal matrix, V is an n × n orthogonal matrix and
S is a “rectangular diagonal” matrix of dimension m × n containing the singular values of A.

Matrix Manipulation Programs 177

These are real and non-negative, and are returned in descending order by MATSVD. The first
min(m,n) columns of U and V are the normalised left and right singular vectors of A.

MATSVD is run using the command:-
 matsvd matfile umatfile smatfile vtmatfile

 where:-

 matfile is a user-supplied matrix file containing an arbitrary rectangular matrix A,

 umatfile contains the SVD-generated U matrix,

smatfile contains a square j×j S (singular value) matrix where j is the least of m and n,
and

 vtmatfile contains the SVD-generated n×n Vt matrix, where Vt is the transpose of V.

Note that while S as represented in the above equation is an m×n matrix, it is only recorded
as a j×j matrix by MATSVD (singular values beyond this are zero). The fact that it is square
allows it to be written with an ICODE value of zero. This, in turn, allows the user to much
more easily inspect the singular values of A than if they were recorded in a large rectangular
matrix of predominantly zero elements.

5.23 MATSYM
MATSYM reads a square matrix A. It forms a symmetric matrix as (A + At)/2, writing this
matrix to a user-nominated file. MATSYM is run using the command:-
 matsym matfile matoutfile

where:-

matfile is the name of a matrix file containing a square matrix, and

matoutfile is the name of a new matrix file to which MATSYM will write the
symmetric matrix, calculated as above.

5.24 MATTRANS
MATTRANS reads a matrix file. It writes another matrix file containing the transpose of the
first matrix file. It is run using the command:-
 mattrans matfile1 matfile2

where:-

matfile1 is the name of a matrix file, and

matfile2 is the name of a new matrix file containing the transpose of the first
matrix file.

Matrix Manipulation Programs 178

5.25 MATXTXI
MATXTXI calculates (XtX)-1 where X is a user-supplied matrix for which the number of
columns does not exceed the number of rows. It is run using the command:-
 matxtxi matfile1 matfile2

where matfile1 contains the X matrix. After completion of execution matfile2 contains the
matrix (XtX)-1.

5.26 MATXTXIX
MATXTXIX calculates (XtX)-1Xt where X is a user-supplied matrix for which the number of
columns does not exceed the number of rows. It is run using the command:-
 matxtxi matfile1 matfile2

where matfile1 contains the X matrix. After completion of execution matfile2 contains the
matrix (XtX)-1Xt.

5.27 PEST2VEC
PEST2VEC reads a PEST control file. A template file of a single column matrix file is then
written based on adjustable parameters cited within the PEST control file; so too is the matrix
file itself, using initial parameter values recorded in the PEST control file. A complementary
transformation vector file (second matrix file required by VECLOG) is also written.
PEST2VEC also writes a new PEST control file in which the template file and associated
matrix file are added to its “model input/output “section.

PEST2VEC assists in the process of allowing parameter value matrix manipulation to be
implemented as part of the model run undertaken by PEST during the parameter estimation
or predictive analysis (more likely the latter) process. The model, as run by PEST, will need
to be upgraded (normally by adding lines to the model batch file) such that one or more of the
matrix manipulation utilities documented herein are cited; if any parameters are log
transformed the command to run VECLOG will need to precede all other matrix operations
in this file. The result of such parameter manipulation is likely to be a matrix itself.
VEC2PEST can be used to alter a PEST control file to accommodate the inclusion of these
results in the parameter estimation and/or predictive analysis processes; VEC2PEST will also
write an instruction file through which the outcomes of such matrix manipulation can be read
by PEST.

PEST2VEC is run using the command:
 PEST2VEC pestfile1 pestfile2 tplfile matfile logfile

Where:-

pestfile1 is an existing PEST control file,

pestfile2 is a new PEST control file written by PEST2VEC in which the template

Matrix Manipulation Programs 179

file and new matrix file are cited in the “model input/output” section,

tplfile is a template file of a matrix file,

matfile is a matrix file citing the initial values of adjustable parameters as
recorded in the PEST control file, and

logfile is the name of a transformation vector file for the use of VECLOG.

5.28 VEC2PEST
VEC2PEST is designed to facilitate the use of matrix manipulation outcomes as observations
to be used by PEST in the parameter estimation and predictive analysis processes. This is
expected to be particularly useful where parameters, or parameter projections, must suffer the
constraints imposed by a covariance matrix when maximizing or minimizing a key model
prediction as part of the predictive analysis process. Thus, as part of this process, PEST
parameters can be written to a matrix file, logarithmically transformed as appropriate, and
then possibly projected onto a subspace of parameter space using matrix multiplication
utilities described herein. The outcome of such a parameter manipulation process will be a
single column matrix (i.e. vector) residing in a matrix file. VEC2PEST generates an
instruction file using which the components of this vector can be read by PEST, and alters an
existing PEST control file to include these vector elements as observations.

In undertaking these activities, VEC2PEST observes the following protocols. These may not
be suitable for all occasions. Hence it is essential that the VEC2PEST-modified PEST input
dataset be checked with the comprehensive error checking utility PESTCHEK.

1. Observation names are denoted as the names of the rows of the single column matrix
to which they correspond.

2. An observation group name is formulated as a text string that is common to all of the
new observation names; if such a string cannot be found, the name of the new
observation group is provided as mat_data.

If these protocols result in conflicts with existing names, the situation must be remedied by
direct editing of the PEST control and instruction files generated by VEC2PEST.

VEC2PEST is run using the command:
 vec2pest vecfile pestfile1 pestfile2 insfile2 [covfile]

where:-

vecfile is the name of a matrix file containing a single-column matrix;

pestfile1 is the name of an existing PEST control file to be modified by
VEC2PEST;

pestfile2 is the name of a new PEST control file to be written by VEC2PEST
containing the new observations;

Matrix Manipulation Programs 180

insfile2 is the name of an instruction file through which the nominated matrix file
will be read by PEST; and

covfile is the name of an optional covariance matrix file for the new observation
group.

In many instances, the covariance matrix file will have been prepared by the utility software
documented herein, or by the PARAMERR utility. Note that VEC2PEST does not check for
the existence of the optionally nominated covariance matrix file. It simply adds its name to
the appropriate place of the PEST control file which it generates, opposite the name of the
new observation group in the “observation groups” section of this file.

5.29 VECLOG
VECLOG reads two matrix files, each of which must contain a single column matrix (i.e. a
vector). The second of these vectors must contain elements which are either 0, 1 or -1. For
each element of the second vector which is 1, the corresponding element of the first vector is
log (to base 10) transformed by VECLOG in forming the corresponding element of a new
vector. For each element of the second vector which is -1, the corresponding element of the
first vector becomes a power of 10 in computing the corresponding element of the new
vector; that is, the corresponding element of the new vetor is computed as 10x where x is the
pertinent element of the first vector. For each element of the second vector which is 0, the
corresponding element of the first vector remains unchanged, and is thus directly transferred
to the new vector. After transformation in this manner, VECLOG records the new vector in a
new matrix file.

VECLOG is run using the command:-
 veclog matfile1 matfile2 matfile3

where:-

matfile1 contains the first vector,

matfile2 contains the second vector, and

matfile3 is the name of a new matrix file to which the log-transformed vector is
written.

Note that if any element of the first vector for which log transformation is sought is zero or
negative, VECLOG will cease execution with an appropriate error message. Note also that if
any element of the new vector is computed to exceed 1036, it is recorded as 1036 to avoid
numerical overflow.

A Global Optimiser – CMAES_P 181

6. A Global Optimiser – CMAES_P
6.1 General
CMAES_P is a “PEST compatible” implementation of the powerful and robust CMA-ES
global optimisation scheme. For details of this scheme see, for example, Hansen and
Ostermeier (2001) and Hansen et al (2003). See Bayer and Finkel (2007) for an application of
the algorithm to groundwater contaminant capture. See also Nikolaus Hansen’s web pages at

http://www.bionik.tu-berlin.de/user/niko

for further details, including a tutorial as well as MATLAB and OCTAVE source code.
Although a brief outline of the algorithm will be presented below, it is strongly suggested that
the user learn something about this algorithm from these sources, so that he/she is equipped
with the knowledge necessary to adjust various control variables in order to meet the
demands of different problems.

Unlike PEST, CMAES_P does not require derivatives of model outputs with respect to
adjustable parameters for implementation of its optimisation algorithm. Thus it can be
employed where model outputs show “numerical granularity” due to model instability, or
where the model is highly nonlinear and/or the objective function surface shows local minima
at various scales. Where model derivatives have integrity, PEST’s performance will almost
certainly be superior to that of CMAES_P (in terms of the number of model runs required to
find the objective function minimum). Where model derivatives do not have integrity,
however, CMAES_P’s performance may be superior to that of PEST.

CMAES_P was built from version 2.5 of CMA-ES. I would like to point out, however, that
any problems, imperfections and inefficiencies encountered in using CMAES_P were
probably introduced by myself rather than being characteristics of the algorithm. I apologize
if I have inadvertently done this.

6.2 The Algorithm in Brief
“CMA” stands for “covariance matrix adaptation”. “ES” stands for evolutionary strategy.
The algorithm employed by CMAES_P is sometimes given the longer name “CMA-ES with
rank µ update and weighted recombination” or simply “(µ, λ) CMA-ES”.

The CMA-ES algorithm employs an iterative procedure to minimize an objective function
which is dependent on n adjustable parameters. In each iteration of this procedure λ random
realisations of n-dimensional parameter vectors are generated, and the objective function is
computed for each (this requiring one model run in each case). Normally λ (also referred to
as the “population size”) is considerably smaller than n. The n-dimensional covariance matrix
used to generate these parameter realisations evolves through the optimisation process in
response to what is learned about the objective function surface from sampling it in this way.
This maintains efficiency of the process, for as the minimum of the objective function is
approached, the search radius about that minimum for possible lower objective functions is
reduced in order to exclude from the n dimensional search area portions of parameter space in

A Global Optimiser – CMAES_P 182

which it is extremely unlikely that the global minimum lies. On the other hand, the fact that
the search process is random reduces the chances of being trapped in a local minimum of the
objective function.

Once the λ model runs have been carried out, the parameter sets giving rise to the µ lowest
objective functions are selected, and a new “mean” parameter set calculated through
formulating a weighted average of the corresponding µ parameter value sets (µ is sometimes
referred to as the “number of parents”). Weights can be assigned as “super-linear”, “linear”,
or “equal”. In the first two cases, greater weight is given to parameters that give rise to lower
objective functions, this often leading to faster reduction of that function. As will be
discussed below, the CMAES_P default is “super linear” (in which lower objective functions
are weighted more heavily than in the “linear” option); though in many cases “linear” works
at least as well.

Once a new average set of parameter values has been computed in this fashion, the next
iteration begins. Because random parameter realisations are generated to be symmetrical
about this mean, there is a tendency of the objective function to fall as iterations proceed.

An extremely important component of the CMA-ES methodology, however, is its capacity to
adapt the parameter covariance matrix that forms the basis for generation of random
parameter samples as the optimisation process progresses. Adaptation takes place on the
basis of wisdom gained from both the current iteration, and from previous iterations, the mix
between the two being set internally by the CMA-ES algorithm. See the references cited
above for further details.

The CMA-ES algorithm goes to considerable lengths in its handling of parameter bounds.
Bounds are never violated, for if any member of a random parameter set violates its
individual bound, it is adjusted to respect it. In addition to this the tendency to generate
parameters which violate bounds is mitigated through adding a penalty to the objective
function (internally to the code) as this occurs; this in turn affects the evolving parameter
covariance matrix on the basis of which further parameter realisations are generated.

6.3 The CMAES_P Implementation of CMA-ES

6.3.1 Introduction

CMAES_P reads a PEST input dataset, including the PEST control file and template and
instruction files cited therein. Like PEST, it communicates with a model through that model’s
own input and output files. Like PEST, it runs a model many times, maximizing the fit
between model outputs and field measurements recorded in the PEST control file (unless it is
asked to minimize a single model output which is assumed to represent a model-calculated
objective function – see below).

6.3.2 Features in Common with PEST

CMAES_P has the following features in common with PEST. The reader is referred to the
PEST manual for a further description of these features. In some case, however, a brief
description is provided below.

A Global Optimiser – CMAES_P 183

1. The PEST input dataset read by CMAES_P can include prior information, multiple
observation groups, and can use observation covariance matrices instead of
observation weights. The objective function calculated by CMAES_P is exactly the
same as that calculated by PEST.

2. Model runs can be undertaken in serial, or in parallel. The parallel run protocol is the
same as that of PEST. If parallelisation is implemented, CMAES_P must be provided
with a run management file. This has the same filename base as the PEST control file,
but possesses an extension of “.rmf”. The history of communication between
CMAES_P and its slaves is recorded in a run management record file. This has the
same filename base as the PEST control file, but possesses an extension of “.rmr”.

3. Like PEST, CMAES_P records the progress of the optimisation process both to the
screen and to a run record file. The latter has the same filename base as the PEST
control file, but possesses an extension of “.rec”.

4. At any stage of the optimisation process, and at the end of this process, best
parameters computed to date can be found in a “parameter value file”, this having the
same filename base as the PEST control file, but an extension of “.par”.

5. A CMAES_P run can be terminated by issuing the PSTOP or PSTOPST command in
another window. Its execution can be paused and unpaused using the PPAUSE and
PUNPAUSE commands.

6.3.3 Parameter Estimation and Optimisation

PEST minimizes an objective function computed as the sum of squared weighted residuals
between model outputs and field or laboratory measurements. So too does CMAES_P.
However use of the CMA-ES algorithm is not restricted to an objective function computed in
this manner, for it can be employed to minimize an objective function calculated in any way
whatsoever (even an objective function whose minimum value is less than zero). While code
internal to CMAES_P computes an objective function in the same way that PEST does,
CMAES_P provides the option of minimizing a single model-generated number (this
presumably being a model-calculated objective function). This option becomes available
when the PEST control file read by CMAES_P contains a single observation and no prior
information. In this case CMAES_P asks the user whether the single model output
corresponding to the observation is to be treated as an objective function to be minimized, or
whether it should be matched to the corresponding measurement in the PEST control file,
thereby formulating a one-term least squares objective function to be minimized. In the
former case, CMAES_P does not calculate an objective function internally, turning its
attention instead to minimizing the single model output presented to it.

6.4 Preparing for a CMAES_P Run

6.4.1 The Input Dataset

As stated above, the input dataset for CMAES_P is identical to that of PEST. Hence utility
software employed for automatic construction of a PEST input dataset can also be employed

A Global Optimiser – CMAES_P 184

for construction of a CMAES_P input dataset. Certain features of this dataset, however, are
ignored (for example variables which govern the calculation of finite–difference derivatives,
for the CMA-ES algorithm does not employ these derivatives). Control variables required by
the CMA-ES algorithm are solicited from the user upon commencement of CMAES_P
execution.

The CMAES_P input dataset can include most of the features available through a PEST input
dataset, including the following.

1. Not all parameters cited in the PEST control file need be adjustable, for some
parameters can be fixed or tied. In the latter case, the parent parameter to one or more
tied parameters is adjusted while the tied parameters simply “ride on its back”.

2. Parameters can be log-transformed or untransformed. In the former case the CMA-ES
algorithm actually estimates the logs of pertinent parameters. The same rationale that
underpins selection of the log transformation option when using PEST should
underpin its selection when using CMAES_P.

3. Parameters can assigned a non-unity SCALE and/or a non-zero OFFSET.

4. Prior information can be included in the PEST control file.

5. The model run by CMAES_P can be a single executable, or a batch/script file
comprised of many executables.

6. A covariance matrix can be employed instead of weights for user-specified groups of
observations.

Nevertheless, there are some restrictions on a CMAES_P input dataset which do not apply to
a PEST input dataset. These include the following.

1. The PESTMODE variable must be set to “estimation”. It must not be set to
“prediction” or “regularisation”. See the discussion below, however, for a way in
which CMAES_P can undertake “pseudo-regularisation”.

2. If the NUMCOM variable in the “control data” section of a PEST control file is set to
greater than 1, and therefore multiple commands appear in the “model command line”
section of the PEST control file. CMAES_P uses only the first of these to run the
model.

3. A non-zero setting of MESSFILE is ignored. Thus CMAES_P does not write a PEST-
to-model-message file.

4. A non-zero setting of JACFILE is ignored, as are the contents of the “derivatives
command line” section of a PEST control file.

6.4.2 Parameter Transformation

As stated above, if parameters are designated as log-transformed during the optimisation
process, the CMA-ES algorithm only “sees” the log of these parameters. Thus the internal

A Global Optimiser – CMAES_P 185

parameter covariance matrix used in the generation of samples of parameter space will in fact
pertain to the logs of pertinent parameters.

As is discussed in the PEST manual, many problems are more linear (and hence more easily
solved) if formulated in terms of the logs of parameters, rather than in terms of native
parameters. Log transformation also has the ability to make parameter sensitivities more
equal, and hence reduce elongation of the parameter covariance matrix. However use of an
appropriate parameter SCALE can have the same affect, and can be more appropriate if log
transformation introduces a significant amount of nonlinearity. Note that a negative SCALE
and/or an appropriate OFFSET can maintain positivity in a parameter prior to its log-
transformation if the latter is deemed to be useful in certain optimisation contexts.

6.4.3 Parameter Initial Values and Parameter Bounds

As is documented in the PEST manual, upper and lower bounds can be placed on parameter
values in the “parameter data” section of the PEST control file; these will be respected as the
optimisation process progresses.

In normal PEST usage, parameter bounds serve a number of roles. On the one hand they can
provide a “reality check” on parameters estimated through the optimisation process. On the
other hand they can prevent model instability or other errors that attend the transgression of
suitable parameter limits.

When using CMAES_P, bounds serve another important role, of which the user should be
aware. Initial parameter standard deviations are computed as one fourth of the interval
between user-supplied upper and lower bounds. As a result of this, random parameter
realisations generated at the start of the optimisation process potentially occupy the entirety
of the bounded interval. However there will be a tendency for these to be closer to initial
parameter values than to parameter bounds, as the former are provided to the CMA-ES
algorithm as initial parameter mean values, and hence values of highest likelihood from the
random parameter generation point of view.

In recognition of the important role played by bounds and initial values, the following rules
should be followed if possible.

1. Bounds should NOT be placed at “plus and minus infinity” (using very high and low
numbers) as is sometimes done when using PEST.

2. If appropriate, bounds should be symmetrical about parameter initial values. If
parameters are log-transformed, then the logarithms of parameter bounds should be
symmetrical about the logarithms of initial parameter values.

It is important to note, however, that initial parameter standard deviations computed in this
manner can be overridden through supplying an initial parameter covariance matrix – a
matter that is discussed in more detail below.

A Global Optimiser – CMAES_P 186

6.5 Running CMAES_P

6.5.1 The CMAES_P Command Line

To inspect CMAES_P command-line options, simply type its name at the screen prompt.
CMAES_P will respond by writing the following text to the screen.

 CMAES_P is run using the command:

 cmaes_p pestfile [/p] [/r]

 where

 pestfile is the name of a PEST control file,
 /p is an optional parallelisation switch, and
 /r is an optional restart switch.

As was discussed in a previous section, the input dataset for CMAES_P is identical to that of
PEST, including a run management file if model runs are to be parallelised. However the
serial and parallel versions of CMAES_P employ the same executable. This is further
discussed below.

As the optimisation process progresses, CMAES_P records the current value of the objective
function to the screen. If model runs are undertaken in serial, then CMAES_P screen output
is interspersed with that of the model as both CMAES_P and the model share the same
window. In this case it may be convenient to redirect model output to a “nul file”.

6.5.2 CMAES_P Prompts

After having read the PEST input dataset, CMAES_P presents the user with a series of
prompts. But first, if it has established that:-

1. there is only one observation cited in the PEST control file, and

2. there is no prior information cited in this file,

it asks:-
 PEST control file has only one observation.
 Minimize model equiv or match to observation? [i/a] (<Enter> if "i"):

Enter “i” (or press the <Enter> key) to inform CMAES_P that it must simply lower the value
of the single model output corresponding to the single observation cited in the PEST control
file. In this case the actual value of that observation, and its weight, listed in the PEST
control file is immaterial. On the other hand, enter “a” to instruct CMAES_P to minimize the
square of the difference between the single model output and its “observed value” as
recorded in the PEST control file.

In all other cases of CMAES_P usage, CMAES_P minimizes exactly the same weighted least
squares objective function as PEST does.

Next CMAES_P issues a number of sets of prompts. (Prompts are used rather than an input
file as this allows the user to run CMAES_P without actually reading this manual; it also
reminds him/her of options available in using CMAES_P. Nevertheless the use of prompts is

A Global Optimiser – CMAES_P 187

a little cumbersome and later versions of CMAES_P may provide an input file alternative.)
All prompts include a default response; this is accepted simply by pressing the <Enter> key.

The first five prompts issued by CMAES_P are listed below; note that the default values
provided below are case-specific.
Enter values for following CMA control variables:-

 Population size, lambda (<Enter> if 11):
 Number of parents, mu (<Enter> if 6):
 Recombination weights [Superlin, Linear, Equal] (<Enter> if superlin):
 Random number seed (<Enter> if 1111):
 Read parameter covariance matrix from a file? (<Enter> if "n"):

The “population size” and “number of parents” are λ and µ respectively, discussed in the
short theoretical overview of the CMA-ES algorithm provided above. The default value for
the former is computed as:-

λ = 4 + 3ln(n) (6.1)

where n is the number of adjustable parameters. The default µ is computed as:-

 µ = λ/2 (6.2)

After λ model runs have been carried out, a new set of mean parameter values is computed
which, in conjunction with the evolving covariance matrix, is employed for generation of
new parameter value realisations. The mean is computed through weighting the parameter
sets corresponding to the µ best results. If the “equal” alternative is selected in response to
the third of the above prompts, then the weights applied to all of the µ parameter sets
employed in computation of this mean are equal. If the “linear” option is selected, weights
are computed as (after ordering from lowest to highest objective function):-

 wi = µ + 1 – i (6.3a)

If the “superlin” option is selected, lower objective functions are assigned an even greater
weight. Weights are then computed as:-

 wi = ln(µ+1) – ln(i) (6.3b)

Any integer can be selected as the random number seed, and supplied to CMAES_P in
response to the fourth of the above prompts. Note that the outcome of CMAES_P runs
implemented on the same platform will be identical as long as the same random number seed
is selected (even if run stopping and restarting is implemented). Selection of different random
number seeds results in the internal generation of different parameter set realisations and
hence in the following of different optimisation paths.

The parameter covariance matrix option (which pertains to the fifth of the above prompts)
will be discussed in the next section.

Next CMAES_P asks (if the number of observations from which the objective function is
computed exceeds the number of adjustable parameters);
 Employ SVD hybridisation? [y/n] (<Enter> if “n”):

A Global Optimiser – CMAES_P 188

The hybridisation scheme is further explained below. At the time of writing, the default is set
to “no”. However the user is urged to try this scheme at some stage, especially if he/she
suspects that derivatives of model outputs with respect to adjustable parameters are not too
bad. If a response of “y” is provided to this question, CMAES_P next asks two further
questions:-
 How many trial singular value thresholds? (<Enter> if 3):
 Use "soft" or "hard" hybridization? [s/h] (<Enter> if "s"):

These are further explained below.

CMAES_P’s next seven prompts are:-
 Termination Criteria:-
 Min rel obj fn change over N itns (<Enter> if 1.00000E-03):
 No of itns (N) over which this applies (<Enter> if 40):
 Min rel param change over N itns (<Enter> if 1.00000E-03):
 No of itns (N) over which this applies (<Enter> if 40):
 Rel high-low generated obj fn diff over N itns (<Enter> if 1.0000E-02):
 No of itns (N) over which this applies (<Enter> if 10):
 Maximum number of iterations (<Enter> if 1000):

A number of CMAES_P termination criteria are similar to those employed by PEST.
However the default values of variables governing those criteria are different from those
commonly employed by PEST.

The first two of the above prompts pertain to the objective function. If it fails to fall by a
relative amount provided in response to the first of the above prompts over the number of
iterations provided in response to the second of the above prompts, then the optimisation
process will be deemed to have reached completion.

The third and fourth of the above prompts pertain to parameter changes. If no parameter
undergoes a relative change given by the response to the third of the above prompts over a
number of iterations provided in response to the fourth of the above prompts, then the
optimisation process will be deemed to have reached completion.

The fifth and sixth of the above prompts pertain to objective functions computed during any
iteration on the basis of the λ trial parameter sets generated during that iteration. If the
relative difference between the highest and lowest of these objective functions is small over a
number of successive iterations, this indicates that the covariance matrix used to generate
parameter realisations contains small parameter variances (hopefully as an outcome of
convergence to the global objective function minimum). As time progress, it becomes more
and more unlikely that even a small lowering of the objective function will occur under these
conditions.

The maximum number of iterations is provided in response to the seventh of the above
prompts. If this is supplied as zero, then CMAES_P will undertake just one model run, this
being on the basis of initial parameter values as supplied in the PEST control file. This can be
useful when the PARREP utility is employed to create a new PEST control file on the basis
of values optimised from a previous CMAES_P or PEST run. A single model run can then be
undertaken on the basis of these optimised parameter values.

As soon as one of its termination criteria is satisfied, CMAES_P will cease execution,
documenting the reason why this occurred.

A Global Optimiser – CMAES_P 189

CMAES_P’s final prompt is:-
 Run model with initial parameters? [y/n] (<Enter> if "y"):

While the default response to the above prompt is “y”, a user may prefer to answer “n” in
circumstances where model run times are long, especially if CMAES_P undertakes model
runs in parallel. In the latter case all machines but one stand idol while this first model run is
completed. There is no real advantage to undertaking this run except for the fact that it then
“sets the standard” with respect to which objective function outcomes of model runs
performed under the control of CMAES_P are measured. Improvements of the objective
function achieved through the calibration process are thereby readily apparent.

6.5.3 Stopping and Restarting

Like PEST, CMAES_P can be stopped by issuing the PSTOP or PSTOPST command from
another command-line window, opened in the same working directory as CMAES_P.
Cessation of execution is instantaneous if CMAES_P is run in parallel mode; however
orphaned model runs will continue in their own windows unless halted by the user. When
undertaking runs in serial, cessation of CMAES_P execution takes place upon completion of
the current model run.

When operating in parallel mode, slaves will not automatically shut down if CMAES_P is
halted using the PSTOP command (for often a user-instigated stop is followed by a user-
instigated re-commencement of the optimisation process). In contrast, if CMAES_P stops of
its own accord because a convergence criterion has been met, of if execution is halted using
the PSTOPST command, then slaves will automatically shut down.

A stopped CMAES run can be re-started using the “/r” command-line switch. Execution will
re-commence at the beginning of the optimisation iteration at which its execution was
previously interrupted. The “/j”, “/s” and “/d” restart switches available with PEST are not
available with CMAES_P.

If the PPAUSE command is issued from another window, CMAES_P execution will pause at
completion of the next model run. This gives the user the opportunity to inspect model output
files based on current parameters if he/she so desires. Program execution can be resumed
using PUNPAUSE.

6.5.4 Final Model Run

If CMAES_P ceases execution through fulfilment of one of its termination criteria, or if it’s
execution is halted through typing of the PSTOPST command, it will undertake one final
model run on the basis of optimised parameters. Thus all model input files are “primed” with
these optimised parameter values, and all model output files contain model-generated
quantities computed on the basis of these parameter values.

It is important to note, however, that this functionality is not available when CMAES_P is
run in parallel mode and stopped using the PSTOPST command. The reason for this is that
while cessation of CMAES_P execution may follow rapidly from invocation of the
PSTOPST command, current model runs must proceed to completion unless terminated by
the user. Once this is done, a final model run on the basis of optimised parameters can be

A Global Optimiser – CMAES_P 190

undertaken using the PARREP utility and then CMAES_P with the maximum number of
iterations set to zero, as described above.

6.6 Supplying a Parameter Covariance Matrix
If desired, an initial parameter covariance matrix can be supplied to the CMA-ES algorithm
embodied in CMAES_P. This can prove useful for at least the following reasons.

1. A user may desire that initial parameter standard deviations NOT be calculated as one
quarter of lower-to-upper parameter bound intervals.

2. When a CMAES_P run is commenced after a PEST run, the parameter covariance
matrix computed by PEST can be supplied as the initial parameter covariance matrix
for CMAES_P, thus hopefully saving the many model runs required to evolve a
suitable covariance matrix.

3. When CMAES_P is run after a previous CMAES_P run, the parameter covariance
matrix computed by CMAES_P in the previous process can be supplied as the initial
parameter covariance matrix for the next CMAES_P run. Once again, valuable model
runs required for covariance matrix evolution can be saved through this strategy.

Upon commencement of execution, CMAES_P’s fifth prompt is:-
 Read parameter covariance matrix from a file? (<Enter> if "n"):

If a user responds to this prompt with “y”, CMAES_P then asks:-
 Enter name of parameter uncertainty file:

The format of a “parameter uncertainty file” is described in PEST documentation. (At the
time of writing, it is actually documented in the addendum to the PEST manual.) This format
provides considerable flexibility in provision of a covariance matrix. In particular:-

1. Parameters can be divided into independent groups, and a partial covariance matrix
can be supplied for each group. If desired, a covariance multiplier can be provided for
each such matrix, this allowing easy adjustment of the magnitude of each matrix.

2. Where some or all parameters are statistically independent of other parameters,
individual parameter standard deviations can be supplied.

Where matrices are supplied, PEST matrix file format must be observed; see PEST
documentation for further details. Use of this format allows ready manipulation of this matrix
by the increasing number of PEST utilities which undertake such manipulation.

It is important to note that where a parameter is log-transformed, the standard deviation
and/or covariance matrix elements associated with that parameter must pertain to the log (to
base 10) of its values rather than to native parameter values.

A parameter uncertainty file, and matrices cited therein, can be built in a number of ways. As
is discussed shortly, CMAES_P writes a pair of such files itself at the end of the optimisation
process (or part way through this process if it is prematurely halted by the user).
Alternatively, if a CMAES_P run was preceded by a PEST run, the PEST-computed

A Global Optimiser – CMAES_P 191

parameter covariance matrix may be supplied as an initial covariance matrix for the use of
CMAES_P. However a little cutting and pasting will be required for proper formatting of this
matrix. (It is anticipated that a utility will shortly be written to automate this task.)

6.7 SVD-Hybridisation
Suppose that n parameters are being estimated. After n+1 model runs have been completed
(and at intervals of approximately n+1 model runs thereafter), CMAES_P has enough
information at its disposal to estimate values for an optimum parameter set using a Gauss
method. This estimate would be correct if the model were linear, and if its outputs were
uncontaminated by numerical noise. In other modelling circumstances such an estimate may
not be good at all.

CMAES_P actually accomplishes this gradient-based estimation of optimal parameters using
singular value decomposition (SVD). Use of SVD as a computational device actually allows
CMAES_P to make a number of such estimates, with these estimates varying according to
the number of singular values used in their computation. Where nonlinearity or model
numerical noise is high, or where parameter differences among the set of n +1 model runs
employed in this calculation do not properly span the full dimensionality of parameter space,
use of a high number of singular values will probably yield poor estimates of optimal
parameters; in contrast the use of a low number of singular values may not provide enough
“parameter resolution” to advance the parameter estimation process, particularly where the
optimal parameter set lies within a long narrow valley in parameter space.

In implementing SVD-hybridized parameter estimation, CMAES_P first selects, from among
the last n +1 model runs, the parameter set that led to the lowest objective function. It then
adopts as “temporary parameters” unit lengths in parameter space along each of the vectors
joining this point to the other n points in parameter space that formed the basis of the other n
model runs. For each such parameter it then computes an approximation to the derivative of
every model output with respect to this parameter as the difference between the respective
model output and that for the base model run (this corresponding to the minimum objective
function of the n + 1 model runs). Thus it builds a Jacobian matrix X for these parameters.

Next CMAES_P undertakes singular value decomposition of XtQX (where Q is the
observation weight matrix), defining matrices V and E in the process such that:-

 XtQX = VEVt

where V is the matrix of normalized eigenvectors of X, and E is a diagonal matrix comprised
of singular values of XtQX arranged in descending order. A subset of these values
comprising a matrix E1 is then selected, and a parameter upgrade vector computed as:-

 p = V1E-1
1Vt

1XtQr

where r is the vector of model-to-measurement residuals computed on the basis of the base
parameter set, and V1 is the subset of V comprised of eigenvectors corresponding to the
subset E1 or E. Actual parameter values are then computed from this temporary parameter
set. The parameter upgrade vector is shortened if necessary in order to keep actual parameter
values within user-prescribed bounds.

A Global Optimiser – CMAES_P 192

The point at which singular value truncation takes place is determined by singular value
ratios. Cutoff ratios of 0.1, 0.01, 0.001 etc (in that order) are selected, depending on the
user’s choice of number of truncation levels to test. For each such selection a new parameter
set is estimated (unless use of two different singular value ratios results in the same number
of selected singular values). The objective function corresponding to each new parameter
estimate is then computed on the next occasion that a series of parallel runs is undertaken.

CMAES_P provides two options for assimilating the results of SVD-based parameter
computation into the overall CMA-ES optimisation process, these being labelled as “soft”
and “hard” in its prompts. If the “soft” option is taken, the best of the currently-selected λ
parameters (these forming part of the n +1 member parameter set on which SVD analysis was
based) is replaced by the SVD-computed parameter set only if the objective function
achieved through the SVD process yields the lowest objective function achieved to date. If
the “hard” option is selected, parameter set replacement is undertaken if the SVD-computed
parameter set leads to a lower objective function than that computed only on the basis of the
current λ parameter sets. The former option is likely to be better if the objective function
surface is pitted with many local minima, for the latter option may lead to too rapid
convergence and hence heighten the chances of being trapped in a local optimum. The latter
option may lead to more rapid convergence if the objective function surface is relatively free
of local optima.

The “cost” of undertaking SVD-hybridisation is that k extra model runs need to be carried out
on every second or third optimisation iteration (depending on the size of λ relative to n)
where k is the number of tested SVD truncation levels. If parallelisation of model runs is
being undertaken, this may or may not be an issue. Ideally λ should be a multiple of the
number of slaves that a user has at his/her disposal in normal CMAES_P operation. When
SVD-hybridisation is being employed, λ + k should be a multiple of the number of slaves. If
there are slaves to spare, then there is no cost whatsoever involved in using SVD-
hybridisation, even if no SVD-based attempt at computation of a parameter upgrade yields a
better result than that obtained on the basis of the CMA-ES algorithm alone. In other cases,
the worth or otherwise of employing SVD-hybridisation will depend on its success in
accelerating the optimisation process. In some circumstances the average extra cost per
iteration will be more than balanced by the reduced number of iterations required to achieve
convergence.

A hidden cost of using the SVD-hybridisation scheme is that CMAES_P memory
requirements can be large. This is because parameters, and all model outputs, associated with
n +1 model runs must stored in memory. In many cases this is not a high cost; however if
many parameters and/or observations are involved in the parameter estimation process, the
cost may become high.

At the time of writing, SVD-hybridisation is not allowed if an observation covariance matrix
is supplied instead of measurement weights for one or more observation groups.

6.8 CMAES_P Output Files
CMAES_P records the history of its optimisation process both to the screen and to its run
record file. The latter has the same filename base as the PEST control file, but possesses an

A Global Optimiser – CMAES_P 193

extension of “.rec”. This file finishes with a table of optimised parameter values.

At any stage of the optimisation process, best parameters achieved to date are available in a
“parameter value file”. This has the same filename base as the PEST control file, but
possesses an extension of “.par”. Parameter values recorded in this file can be placed into
another PEST control file (as initial values recorded in that file) using the PEST PARREP
utility. At the end of a CMAES_P run, this procedure can be used to create an input dataset
for PEST, in which PEST can then be used to create a series of its own output files based on
optimised parameters. To obtain a residuals file set NOPTMAX to zero in the PEST control
file so that PEST undertakes just one model run. To obtain parameter covariance and
uncertainty data, set NOPTMAX to -1.

CMAES_P records its final covariance data in a parameter uncertainty file. This file has the
same filename base as the PEST control file but possesses an extension of “.unc”. The actual
matrix is stored in a file with an extension of “.cmf”.

On the basis of the parameter value and covariance data files recorded by CMAES_P, it is
possible to commence a new CMAES_P run with new control variables (for example λ and
µ) while retaining the benefits of progress made during a previous CMAES_P run. A suitable
procedure is as follows.

1. Use the PARREP utility to build a new PEST control file from the PEST control file
on which the just-completed CMAES_P run was based, but with initial parameter
values replaced by values computed by CMAES_P.

2. Commence another CMAES_P run on the basis of this new PEST control file. When
CMAES_P prompts for inputs, provide non-default values as desired for variables
such as λ and µ. Also inform CMAES_P that a parameter covariance matrix is to be
provided; then provide the name of the parameter uncertainty file written by
CMAES_P on its previous run.

If appropriate, parameter covariance data can be modified from that recorded in the
parameter uncertainty file by CMAES_P on its previous run. Modifications may include the
following.

1. The variance multiplier recorded in the CMAES_P-produced parameter uncertainty
may be made larger or smaller in order to widen or narrow the initial search region in
the re-commenced CMAES_P run.

2. Instead of a covariance matrix, it may be desired that only parameter standard
deviations be supplied, these being comprised of the square roots of diagonal
elements of the covariance matrix; thus the temporary assumption of parameter
independence is made. This can be achieved through use of the PEST MATDIAG
utility, together with a little cutting and pasting.

6.9 Parallelisation
As for PEST, CMAES_P-invoked model runs can be undertaken in parallel across computer
networks and/or processors. Model runs are carried out through the agency of slaves which

A Global Optimiser – CMAES_P 194

receive and send signals to CMAES_P through message files. See the PEST manual for
further details.

When parallelisation is implemented, the CMAES_P input dataset must include an additional
file, this being the parallel run management file. This should have the same filename base as
the PEST control file, but possess an extension of “.rmf”. This file is identical to the PEST
run management file; all variables have the same role, except for the PARLAM variable
which, if present, is ignored. It is also important to note that the IFLETYP variable must be
set to 0 rather than 1. Thus individual model input and output filenames are not supplied for
each slave; rather their names are determined through prefixing of the pertinent slave
working directory name to model input and output filenames supplied in the PEST control
file.

As for PEST, CMAES_P records a complete history of communications between it and its
slaves to a run management record file; this has the same filename base as the PEST control
file, but possesses an extension of “.rmr” (for “run management record”).

The number of runs completed during the current package of parallel run calls (which
normally coincides with an iteration, the total size of the package therefore being λ) is
available in a file with the same filename base as the PEST control file, but with an extension
of “.rcr”.

There is one major difference between the parallel version of PEST and the parallel version
of CMAES_P. Parallel PEST is run as a separate executable (named PPEST). Parallelisation
of CMAES_P is activated through a command-line switch, this being the “/p” switch. The
same executable is employed for both serial and parallel runs.

The choice to parallelise model runs may have a bearing on the choice of certain CMAES_P
control variables. If the parameter population size (λ) is a multiple of the number of slaves,
then slaves are not idle for part of an iteration. If SVD-hybridisation is implemented, the
number of slaves should be a multiple of the population size plus singular value cutoffs
implemented.

6.10 Pseudo-Regularisation
When run in regularisation mode, PEST adjusts weights on an iteration-by-iteration basis for
observations and prior information equations belonging to observation groups whose names
begin with “regul”. Two types of weights adjustment are performed.

1. If the IREGADJ regularisation control variable is set to 1, then weights adjustment
between regularisation groups is undertaken, such that those groups which are most
sensitive to parameters which are least sensitive to actual measurements receive
greater weight.

2. Subsequent to this adjustment, a global weights multiplier is applied, this being
equivalent to the Lagrange multiplier employed in the constrained minimisation
process through which Tikhonov regularisation is implemented in PEST. In this
constrained minimisation problem, the regularisation objective function is minimized

A Global Optimiser – CMAES_P 195

subject to the constraint that the measurement objective function is equal to its user-
specified target, PHIMLIM.

Such functionality is not available through CMAES_P, for implementation of both of the
above weights adjustment strategies requires that sensitivities of model outputs with respect
to adjustable parameters be available. However, CMAES_P does not compute these
sensitivities. As has already been discussed, one of its strengths is that it can thus perform
satisfactorily in a model calibration context in which model outputs are corrupted by
numerical noise. However, as was also discussed above, this comes at a cost. One cost is the
fact that model run requirements for objective function minimisation are normally higher
than for PEST. Another cost is that implementation of Tikhonov regularisation in the manner
discussed above is not possible.

For CMAES_P usage in model calibration contexts this may not be a disadvantage, for
normally the number of adjustable parameters will be far fewer than estimated by PEST
because of the much higher model run requirements of CMAES_P; hence the need for
regularisation will not be as pressing. However in contexts where a management objective
function is minimised in order to maximize operational efficiency (i.e. in contexts where
CMAES_P is being used for optimisation rather than calibration purposes), the ability to
include constraints in the objective function minimisation process may be missed. Certainly
the relationships through which constraints are formulated may be included in the CMAES_P
objective function. But the ability to compute a weight factor for these constraints equivalent
to a Lagrange multiplier is not available. The following procedure may then be worthy of
consideration.

1. Set up a PEST control file in which PEST runs in regularisation mode. Set
NOPTMAX to 1 in this file, so that PEST runs for just 1 optimisation iteration.

2. Run PEST.

3. Build a new PEST control file. In this file replace weights for all observations and
prior information equations belonging to regularisation groups with those recorded in
the residuals file on the previous one-iteration PEST run. This file has the same
filename base as the previous PEST control file but has an extension of “.res” (or
“.rei” for the intermediate residuals file). These weights have been updated by PEST
in accordance with the weights adjustment procedures described above.

4. Instruct PEST that it must run in “parameter estimation” mode.

The new PEST input dataset is then ready to be used by CMAES_P.

Of course the question must be asked “why not use PEST to undertake optimisation – after
all, we are attaching credence to its derivatives for the purpose of weights adjustment; why
not attach credence to these derivatives for the purpose of constrained minimisation of the
regularisation objective function?” This is a good question.

A Global Optimiser – SCEUA_P 196

7. A Global Optimiser – SCEUA_P
7.1 Introduction
Like CMAES_P, SCEUA_P is a global optimiser. Like CMAES_P it is interchangeable with
PEST in that a PEST input dataset (comprising a PEST control file and template and
instruction files cited therein) can also serve as a SCEUA_P input dataset, with no alterations
whatsoever required to this dataset. Like CMAES_P, SCEUA_P can work in serial and
parallel modes; when used in the latter mode, model runs can be distributed across machines
in a network for increased optimisation efficiency. And like CMAES_P, SCEUA_P can be
employed to minimise either a least-squares objective function as defined through a PEST
input dataset, or an objective function defined in another way by the model.

SCEUA_P implements the SCE (“shuffled complex evolution”) algorithm described by Duan
(1991) and Duan et al (1992; 1993; 1994); UA stands for “University of Arizona”. The SCE
method does not require computation of derivatives of model outputs with respect to
adjustable parameters. Hence it can operate successfully even where the relationship between
model parameters and model outputs is discontinuous, or is contaminated by model-
generated numerical noise. It can also perform well where the objective function features
local optima on either a large or small scale (or both) in parameter space.

The SCEUA_P program described herein replaces another program of the same name that
was previously supplied with the PEST Surface Water Utility suite. The previous program
lacked many of the features of this newer version of SCEUA_P, including parallelisation and
restart capabilities. It also lacked the ability to accommodate log transformation of
parameters, and its screen and run record file reporting of the optimisation process were less
detailed than for this newer version. The user should be sure when running SCEUA_P that
the new version of this program, and not the old one, is run. If he/she has previously
downloaded a PEST Surface Water Utility suite which contains the old SCEUA_P program,
then that version of SCEUA_P should be deleted.

The SCE algorithm was developed for calibration of surface water models, where local
optima are not an uncommon phenomenon (though it has since been used in many other
applications as well). The reader’s attention is drawn to the TSPROC program supplied with
the PEST Surface Water Utility suite which was also developed specifically for use in the
surface water modelling context. This automates preparation of a PEST input dataset (and
hence an SCEUA_P input dataset) involving a complex multi-component objective function
comprising flows, flow volumes, flow statistics and baseflow-filtered flows.

Code for SCEUA_P encapsulates FORTRAN source code supplied by the University of
Arizona. However, as detailed below, the algorithm implemented in that code has been
provided with expanded capabilities in its SCEUA_P implementation described herein. It is
the author’s hope that no bugs were introduced in the enhancement process. If, for a
particular application, a user finds that the SCE algorithm as implemented by SCEUA_P does
not perform to expectations, then it is not impossible that this is the author’s fault.

Another note of caution must be sounded with respect to the parallel version of SCEUA_P

A Global Optimiser – SCEUA_P 197

described below. If any problems are encountered in using this version (a possible problem is
discussed in the pertinent section below), please notify the author so that he can take the
necessary steps to rectify the problem in future versions of this program.

7.2 Using SCEUA_P

7.2.1 SCEUA Control Variables

The SCEUA algorithm is described in the abovementioned texts; see, in particular, Duan et al
(1992). As for most optimisation algorithms, the method can be “tuned” for optimal
performance through adjustment of a number of control variables. Default values are supplied
for all of these but 1, this being the number of complexes that are evolved in each evolution
step undertaken by the algorithm. Choice of fewer complexes requires the carrying out of
fewer model runs; however it raises the chances of failure of the SCE process in finding the
global objective function minimum. A value of between 2 and 20 is recommended, with the
number increasing with complexity of the problem and the number of parameters being
estimated. (Use 5 if in doubt.)

As is discussed in the PEST manual, log-transformation of some or all parameters can make
many optimisation problems easier to solve. Parameter transformation is implemented
through appropriate setting of the PARTRANS variable in the “parameter data” section of the
PEST control file. SCEUA_P also respects the tying and fixing of parameters as implemented
in a PEST control file, as well as SCALEs and OFFSETs provided to parameters through this
file.

Values for SCEUA_P control variables are provided by the user in response to a series of
screen prompts issued by SCEUA_P. This eliminates the need for preparation of a dedicated
SCEUA_P input file. On most occasion of SCEUA_P usage, the value of only one control
variable need be supplied, this being the number of complexes to employ in the current
optimisation process. Through responding to all other prompts simply be pressing the
<Enter> key, default values are accepted. In most cases these work well.

7.2.2 Running SCEUA_P

SCEUA_P is run by typing its name at the command-line prompt, followed by the name of
the PEST control file which it must read. Optional parallelisation and/or restart switches can
follow that. Thus, for example, if the name of the PEST control file for the current case is
case.pst, then SCEUA_P should be run by typing the following line at the command-line
prompt:-
 SCEUA_P case

Note that either the full name of the PEST control file (i.e. “case.pst” in the example above),
or simply its filename base (i.e. “case” in the example above) can be provided on the
command line. An optional “/p” switch following the name of the PEST control file signifies
parallelisation (see below), while an “/r” switch instructs SCEUA_P to re-start a previous run
whose execution was terminated before completion. (Another command line switch, “/s”, can
also be employed; this is discussed below in conjunction with SCEUA_P parallelisation.)

A Global Optimiser – SCEUA_P 198

Immediately upon commencement of execution, SCEUA_P reads the cited PEST control file.
If an error exists within this file, the nature of the error is reported to the screen prior to
termination of SCEUA_P execution. It is important however that, just as for PEST, the
complete input dataset be checked using the PESTCHEK utility prior to running SCEUA_P,
for SCEUA_P error checking is not as exhaustive as that of PESTCHEK; certain undetected
errors can, in some circumstances, lead to unpredictable SCEUA_P behaviour.

After having read the PEST input dataset, SCEUA_P issues the following series of prompts
for values of its control variables. If desired, all but the first can be responded to simply by
pressing the <Enter> key, this signalling acceptance of the displayed default value.
Alternatively, the user can provide an appropriate value of his/her choice. However if an
inappropriate value is supplied SCEUA_P will respond to the user’s input with contempt,
repeating the prompt until the user responds with a control variable value that SCEUA_P
finds less repugnant.

SCEUA_P’s first set of prompts are as follows (note that the default values depicted below
are context-specific):-
 Enter initial number of complexes:
 Minimum number of complexes (<Enter> if 5):
 Parameter sets in each complex (<Enter> if 9):
 Parameter sets per sub-complex (<Enter> if 5):
 Include initial parameter set in population? [y/n] (<Enter> if n):
 Evolution steps before shuffling (<Enter> if 9):
 Random number seed (<Enter> if 555):
 Verbose or non-verbose SCEUA printout? [v/n]: (<Enter> if "n"):

As has been stated above, a suitable response to the first of these prompts is often 5. The SCE
algorithm provides the option of decreasing the number of complexes as the optimisation
process progresses (this resulting in fewer model runs per complex evolution loop). If such a
decrease is desired, provide a number in response to the second of the above prompts that is
less than that provided in response to the first of them.

The second, third and fourth of the above prompts are self-explanatory.

As is described by Duan et al (1992), the SCE algorithm commences its operations by
generating a number of sets of random parameter values and then undertaking a model run on
the basis of each of these. The number of such sets is equal to the number of complexes times
the number of parameter sets in each complex. These sets are then grouped into respective
complexes after ordering on the basis of objective function value. Parameter value generation
in this initial phase of the SCE process takes place on the basis of a uniform probability
distribution extending between the upper and lower bound of each parameter, these bounds
being supplied in the PEST control file. The user should ensure that these bounds are set no
wider than is necessary. Note that if a parameter is log-transformed, the probability
distribution on the basis of which its random values are generated is log-uniform rather than
simply uniform.

Depending on the user’s response to the fifth of the above prompts, the “initial parameter set”
(this being comprised of initial parameter values as supplied in the PEST control file) are
included in the random parameter collection on which initial complex selection is based.

A Global Optimiser – SCEUA_P 199

As is common among global optimisers, random number generation underpins much of the
SCE optimisation process. This is both the strength and the weakness of such schemes. On
the one hand, judicious use of this parameter selection mechanism minimises the probability
of being trapped in a local objective function minimum. On the other hand, because these
methods don’t “head straight downhill” to the perceived lowest point of the objective
function terrain, the optimisation process requires many model runs for its completion
(mostly many more model runs than are required by PEST). The optimisation process is
repeatable if the same random number generator seed is used in subsequent SCEUA_P runs.
However selection of a different seed will result in an alternative optimisation path being
taken. Sometimes repetition of the optimisation process using a number of different seeds
allows the user to verify that the global objective function minimum has indeed been found.

As is described below, one of SCEUA_P’s output files is named sceout.dat. This is identical
to the file of the same name written by the original SCEUA code as supplied by University of
Arizona. This original code provides two different options for the recording of data to this
file. For the non-verbose option, only the parameter set pertaining to the best estimate of the
global optimum at the end of each shuffling loop is recorded. For the verbose option, the
entire sample population is recorded at the end of each shuffling loop. Note, however, that
parameters in this file are referred to as “x1”, “x2” etc. Depending on the log transformation
status of various parameters, the values recorded in this file can be either native parameter
values or the logs (to base 10) of these values; the values of tied and fixed parameters are
omitted altogether. (As is discussed below, a somewhat more informative, PEST-compatible,
record of the optimisation process is available through the SCEUA_P run record file and its
associated parameter value file.)

SCEUA_P’s next three prompts pertain to termination of the optimisation process. They are
as follows:-
 Max relative obj fn change over N itns (<Enter> if 1.0000E-02):
 No of itns over which this applies (<Enter> if 5):
 Maximum number of model runs (<Enter> if 10000):

If the default values are accepted, SCEUA_P will cease execution if the objective function is
not reduced by more than one percent over five successive iterations (i.e. evolution loops), or
if 10000 model runs have been carried out.

If a value of zero is supplied in response to the last of the above prompts, SCEUA_P will
carry out just one model run using the initial parameter values supplied in the PEST control
file. It will then terminate execution after writing the objective function value corresponding
to this parameter set (as well as contributions to this objective function by different
observation groups) to the screen and to its run record file. This can be a useful device for
ensuring that model input files contain optimised parameter values and that model output
files contain predictions generated on the basis of these optimised parameter values. If a
previous SCEUA_P run was halted prematurely (but the user nevertheless has confidence
that near-optimal parameter values were obtained), or was undertaken in parallel mode, then
the PARREP utility can be employed to build a new PEST control file using parameter values
computed on this previous run. By then running SCEUA_P with the “maximum number of
model runs” set to zero, the desired aim of building model input and output files on the basis
of these values is thereby achieved.

A Global Optimiser – SCEUA_P 200

7.2.3 SCEUA_P Output

As it runs, SCEUA_P writes the current value of the objective function (and the contributions
made to the objective function by different observation groups) to the screen. This
information is replicated in the SCEUA_P run record file. The latter has the same filename
base as the PEST control file, but possesses an extension of “.rec” (like the PEST run record
file). The values employed for SCEUA_P control variables for this run are recorded at the top
of this file; optimized parameter values are tabulated at the end of the file.

At any stage of the optimisation process, best parameter values achieved to date can be found
in a “parameter value file”. This has the same filename base as the PEST control file, but
possesses an extension of “.par”. As mentioned above, the PARREP utility can be used to
insert these values into a new PEST control file as initial parameter values in that file.

As discussed above, SCEUA_P produces a third file named sceout.dat. This contains a
complete record of the SCE optimisation process written in SCE format.

7.2.4 Interrupting a SCEUA_P Run

SCEUA_P execution can be stopped in its tracks by pressing <Ctl-C>. It can be stopped in a
less brutal way by typing PSTOP while situated in the same directory as that employed for
the current SCEUA_P run, but within another command-line window. If a final model run
based on optimised parameters is desired before cessation of execution, use the PSTOPST
command instead (unless SCEUA_P is running in parallel mode and therefore cannot write
this file for reasons discussed below). Execution of SCEUA_P can be temporarily paused
using the PPAUSE command, and recommenced using the PUNPAUSE command. Note that
if SCEUA_P is being used in serial mode, none of these commands will take effect until
completion of the current model run. If running in parallel mode they will take effect
immediately, while the model continues to run in other window(s) and/or on other
machine(s).

7.2.5 Restarting a SCEUA_P Run

A prematurely terminated SCEUA_P run can be restarted by adding the “/r” switch to its
command line, after the name of the PEST control file which it must read. If execution was
halted during the initial phase of SCEUA_P execution prior to the first instance of complex
evolution (i.e. at that stage of the process where model runs are simply undertaken on the
basis of random parameter values), then recommencement of SCEUA_P execution will
actually take place at the start of the entire SCE optimisation process. Otherwise SCEUA_P
will re-commence execution at the beginning of the evolution loop in which its execution was
previously interrupted.

Note that in spite of the fact that random number generation forms the basis of the SCE
algorithm, a stopped and re-started run will follow the same optimisation path as that which
would have been followed if no interruption had taken place.

7.2.6 Minimisation of a Non-Least-Squares Objective Function

If there is no prior information in the PEST control file, and if only one observation is

A Global Optimiser – SCEUA_P 201

featured in this file, SCEUA_P issues an additional prompt to those listed above. It asks:-
 Minimize model equiv or match to observation? [i/a] (<Enter> if "i"):

If “i” (for “mInimize”) is selected, SCEUA_P does not compute an objective function
through forming the difference between the single model output and its single measured
counterpart and multiplying by the square of the weight. Instead it simply minimizes the
single model output, which can therefore be an objective function computed by the model in
a way that best suits the user’s current application. Selection of “a” (for “mAtch”) results in
normal SCEUA_P operation in which SCEUA_P attempts to minimize the difference
between the single model output and its observed counterpart. Note that the lowest objective
function achievable through the latter process is zero. The lower limit to a model-computed
objective function depends on the way in which this objective function is defined. There is no
reason why this cannot be less than zero.

7.2.7 Final Model Run

If the SCE optimisation process runs to completion, or if it is stopped using the PSTOPST
command, SCEUA_P will undertake one final model run using optimized parameter values
for this run. This does not occur, however, when SCEUA_P runs in parallel mode for reasons
which will be discussed below. In this latter case the PARREP utility can be used to build a
new PEST control file whose initial parameter values are in fact optimised parameter values.
SCEUA_P can then be used to undertake just one model run on the basis of this parameter
set. (Alternatively, the NOPTMAX variable in the PEST control file can be set to zero and
PEST can be employed to undertake this single model run.)

7.2.8 Best Parameter Values

As has already been discussed, at any time during a SCEUA_P run the best parameter values
achieved so far during that run are available in a parameter value file whose filename base is
the same as that of the PEST control file but whose extension is “.par”. Thus if SCEUA_P
execution is terminated through user intervention or model failure, the best parameter values
achieved during the run are nevertheless available for later use. The role of the PARREP
utility in facilitating the conduction of a single model run on the basis of these parameters has
been described. (Sometimes it may be noticed that use of PARREP in this fashion leads to a
lower objective function than that listed in the SCEUA_P run record file. Indeed the
objective function is reported in the latter file only at the end of each complex evolution loop.
If a lower objective function was encountered mid-loop, but prior to interruption of
SCEUA_P execution, the parameter set recorded in the parameter value file is immediately
upgraded.)

7.3 Parallel SCEUA_P

7.3.1 Principles of Use

Parallelisation of the SCE optimisation process is not as easy as that of PEST, or of the CMA
optimisation process. In both of these latter algorithms batches of model runs are
intermittently required for which the parameters employed in one such run are independent of
those employed in any of the others. Unfortunately this is not the case for the SCE algorithm,

A Global Optimiser – SCEUA_P 202

for evolution of parameter complexes is an innately serial process in which the parameters
that are employed on one run are dependent on the objective function achieved during the
previous model run.

Nevertheless, parallelisation is not impossible, for the evolution of complexes is independent
and can thus be undertaken for different complexes on different machines. The procedure
with which the SCE process begins (in which a suite of model runs is undertaken on the basis
of randomly selected parameter values) is also paralleliseable.

Parallelisation at the level of parameter complexes has been implemented in SCEUA_P.
However while the use of SCEUA_P in parallel mode is similar to that of PEST (in that a
master and multiple slaves are employed for this purpose), there are nevertheless some
important differences of which the user must be aware. These are now outlined.

7.3.2 The SCEUA_P Master

Unlike PEST, the program which implements the parallelised version of the SCE algorithm is
the same as that which implements the serial version of this algorithm; parallelisation is
invoked simply through use of the “/p” switch on the command line. Thus to run SCEUA_P
in parallel mode on the basis of a calibration dataset encapsulated in a PEST control file
named case.pst, SCEUA_P should be run using the command:-
 sceua_p case /p

The restart “/r” switch can be added to the end of this line if desired.

As for PEST and CMAES_P, slave details must be supplied to SCEUA_P through a run
management file whose filename base is the same as that of the PEST control file but whose
extension is “.rmf”. The format of this file is the same as that used by PEST. However the
PARLAM variable is ignored, and IFLETYP must be set to zero.

7.3.3 Slaves

As for PEST and CMAES_P, slave functionality is implemented in the PSLAVE program.
However there are a number of important differences between the tasks required of a slave
when serving PEST and CMAES_P on the one hand, and SCEUA_P on the other. In the
former cases the slave supervises the carrying out of a single model run at a time. Hence
when a user is prompted for the command which the slave must use to run the model, he/she
simply supplies the model command. However when PSLAVE serves a SCEUA_P master
the command to run SCEUA_P in “slave mode” must be supplied to PSLAVE as the “model
command line”, for the “model” in this case is actually a special version of SCEUA_P which
either undertakes a single model run, or evolves one parameter complex, as required during
pertinent stages of the SCE optimisation process. Thus the slave runs SCEUA_P; it is
SCEUA_P which actually runs the model (many times).

There are a number of important consequences of this mode of slave operation. Some of these
are as follows.

1. When prompted by PSLAVE for the command to run the model, the user must
respond with:-

A Global Optimiser – SCEUA_P 203
sceua_p case /s

where case is the filename base of the PEST control file – the same file as that
supplied on the command-line of the SCEUA_P master. “/s” is a switch which
commands SCEUA_P to run in slave mode.

2. Because of this, the PEST control file, and all template and instruction files cited
therein, must be copied to all slave directories from the master directory. This differs
from the operation of parallel PEST wherein the PEST master writes model input files
and reads model output files across the network based on template and instruction
files residing only in its own working directory.

Other important consequences of the fact that parallelisation is undertaken on the basis of
parameter complexes rather than individual model runs include the following.

1. Once the original set of model runs based on random parameter values has been
carried out, there is no advantage to having more than n slaves, where n is the user-
supplied number of complexes that SCE has been instructed use in the optimisation
process.

2. On the other hand, if more than n slaves are available, there is no advantage in
informing SCE that it must use less than n complexes.

3. Because the number of model runs required in evolution of different complexes may
be different, some slaves may be idle while waiting for the evolution of other
complexes to reach completion, prior to the shuffling of parameter sets undertaken by
the master program.

4. Because the use of random numbers in an integral component of the SCE optimisation
process, the optimisation path taken for a given problem will be different when solved
by SCEUA_P in parallel mode from the path taken by SCEUA_P in serial mode, even
if the same random number generator seed is employed in both cases. This is because
the random number generator cannot be used to generate parameter values for the
same complexes in the same order in both of these two modes. (Nevertheless a
restarted parallel run will indeed follow the same optimisation path as an
uninterrupted parallel solution process.)

When run in slave mode, SCEUA_P leaves no output files, for only the master program
leaves a record of the optimisation process and the objective function and parameter values
achieved through this process. The master SCEUA_P program also works very differently
when running in parallel mode than when running in serial mode. In fact it writes its own
template file (this being called sce_slave.tpl) which in turn governs the writing of the
SCEUA_P slave input file named sce_slave.in. The SCEUA_P slave in turn writes an output
file named sce_slave.out which is read by the master SCEUA_P program using an instruction
file named sce_slave.ins written by itself.

7.3.4 Final Model Run in Parallel Mode

Because of the changes made to its normal operations, the parallelised SCEUA_P master
program cannot undertake a final model run using optimised parameters upon completion of

A Global Optimiser – SCEUA_P 204

the optimisation process. This must be done using the PARREP utility as discussed above.

7.3.5 Additional Output Files

In addition to its normal suite of output files, the master SCEUA_P records an additional file
named case.rcr, where case is the filename base of the PEST control file for the current case.
This is updated on every occasion that SCEUA_P requests a model run; case.rcr simply
records the number of model runs undertaken to date. It must be recalled in interpreting this
file, that during the parameter complex evolution process, a “model run” is actually an
SCEUA_P run undertaken in slave mode. Parameter complex evolution in fact requires many
actual model runs, all of these being undertaken by the SCEUA_P slave.

A parallel run management file named case.rmr is also written by the master SCEUA_P
when running in parallel mode. This provides a complete record of communication between
the SCEUA_P master program and each of its slaves.

7.3.6 A Possible Error Message

As stated above, when undertaking parallelised SCE optimisation, it is actually the slave
version of SCEUA_P which runs the model. It does this through a system call. However the
slave version of SCEUA_P is actually run by PSLAVE through a system call. Thus the
model is actually run by a system call nested within a system call.

Normally this situation presents no problems to an operating system. However it has been
noticed that if a computer is very busy with other tasks, an error message such as “cannot
read model output file as file sharing is not loaded”, may be written to the slave window.
This occurs because operating system messages regarding the availability (or lack of
availability) of files can get overtaken by other messages to read these files.

If this occurs too often, please notify the author (johndoherty@ozemail.com.au); I may then
attempt to overcome the problem by building PSLAVE and SCEUA_P into the one
executable program so that system calls do not need to be nested. In the meantime, set the
value of the RUNREPEAT variable in the PEST run manager file to 1 (see elsewhere in this
addendum for a description of this variable). This will force SCEUA_P to repeat any model
run in which this (or any other) error occurs before declaring the problem to be the model’s
fault and terminating the optimisation process as a consequence.

7.4 Problem Formulation
When using the SCE method, take care to formulate a well posed inverse problem, i.e. a
problem for which there is a unique solution. The SCE algorithm has no built-in
regularisation; hence it is up to the user to undertake “manual regularisation” by ensuring that
an appropriate level of parameter parsimonisation has been undertaken prior to the calibration
process, and that not too much correlation exists between parameters that are retained in the
process. The performance of SCE (and most parameter estimation methods) deteriorates as
the level of parameter correlation increases.

References 205

8. References
Bayer, P. and M. Finkel, 2007. Optimization of concentration control by evolution strategies:
formulation, application and assessment of remedial solutions.

Christensen, S. and Cooley, R.L. 1999. Evaluation of prediction intervals for expressing
uncertainties in groundwater flow model predictions. Water Resources Research, vol35, no 9,
pp 2627-2639.

Cooley, Richard L., 2004. A Theory for Modeling Ground-Water Flow in Heterogeneous
Media: Reston, Va., U.S. Geological Survey, Professional Paper 1679.

Duan, Q., 1991. A global optimization strategy for efficient and effective calibration of
hydrologic models. PhD thesis, Department of Hydrology and Water Resources, University
of Arizona, Tuscon, 1991.

Duan, Q., Soorooshian, S. and Gupta, V., 1992. Effective and efficient global optimization
for conceptual rainfall-runoff models. Water Resources Research 28 (4), 1015-1031.

Duan, Q., Gupta, V.K. and Sorooshian, S., 1993. A Shuffled Complex Evolution approach
for effective and efficient global minimization. Journal of Optimization Theory and its
Applications, 76 (3), 501-521.

Duan, Q., Sorooshian, S. and Gupta, V.K., 1994. Optimal use of the SCE-UA global
optimization method for calibrating watershed models. Journal of Hydrology, 158 265-284.

Hansen, N. and A. Ostermeier, 2001. Completely derandomized self-adaptation in evolution
strategies. Evol. Comput., 9, 159-195

Hansen, N., S.D. Muller, and P. Koumoutsakos, 2003. Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol.
Comput, 9, 159-195.

Moore, C. and Doherty, J., 2005a. The role of the calibration process in reducing model
predictive error. Water Resources Research. Vol 41, No 5. W05050.

Moore, C. and Doherty, J., 2005b. Regularized Inversion in Groundwater Model Calibration.
The Cost of Uniqueness. Accepted for Publication in Advances in Water Resources.

Paige, C.C. and Saunders, M.A., 1982a. LSQR: an algorithm for sparse linear equations and
sparse least squares. ACM Trans. Math Softw, vol8: 43-71.

Paige, C.C. and Saunders, M.A. 1982b. LSQR: an algorithm for spare linear equations and
sparse least squares. ACM Trans. Math. Softw. Vol 8: 192-209.

Poeter, E.P. and Hill, M.C., 2007. MMA, A Computer Code for Multi-Model Analysis. U.S.
Geological Survey Techniques and Methods 6-E3, 113p.

References 206

Vecchia, A.V. and Cooley, R.L., 1987. Simultaneous confidence and prediction intervals for
nonlinear regression models with application to a groundwater flow modwl. Water Resources
Research, vol23, no. 7, pp1237-1250.

