

FORTRAN 90 Modules
for Implementation of

Parallelised, Model-Independent,
Model-Based Processing

John Doherty

Watermark Numerical Computing

March 2007

Table of Contents

Table of Contents
1. Introduction..1

1.1 General ..1
1.2 PEST-Model Interface ..1
1.3 Parallelisation of Model Runs...2
1.4 The Modules Documented Herein ..2
1.5 Source Code ..3

2. MODEL_INPUT_OUTPUT_INTERFACE..4
2.1 General ..4
2.2 Subroutine MIO_INITIALISE..4
2.3 Subroutine MIO_PUT_FILE ..5
2.4 Subroutine MIO_GET_FILE ..6
2.5 Subroutine MIO_PROCESS_TEMPLATE_FILES..6
2.6 Subroutine MIO_STORE_INSTRUCTION_SET..7
2.7 Subroutine MIO_DELETE_OUTPUT_FILES...7
2.8 Subroutine MIO_WRITE_MODEL_INPUT_FILES ...8
2.9 Subroutine MIO_READ_MODEL_OUTPUT_FILES...9
2.10 Subroutine MIO_GET_MESSAGE_STRING..10
2.11 Subroutine MIO_FINALISE...11
2.12 Subroutine MIO_GET_STATUS..11
2.13 Subroutine MIO_GET_DIMENSIONS..12

3. PARALLEL_RUN_MANAGER...13
3.1 General ..13
3.2 Interaction with MODEL_INPUT_OUTPUT_INTERFACE Module13
3.3 Parallelisation Principles...14
3.4 Subroutine PRM_INITIALISE ...14
3.5 Subroutine PRM_SLAVEDAT...15
3.6 Subroutine PRM_SLAVETEST ...16
3.7 Subroutine PRM_DORUNS ...17
3.8 Subroutine PRM_GET_MESSAGE_STRINGS...19
3.9 Subroutine PRM_SLAVESTOP ...20
3.10 Subroutine PRM_FINALISE..20
3.11 The Parallel Run Management Record File..21
3.12 Model Run Times..21
3.13 Stopping and Pausing..21
3.14 Restarting ..22

4. Two Drivers ...23
4.1 General ..23
4.2 The DRIVER1 Utility ...23
4.3 The DRIVER2 Utility ...25

Introduction 1

1. Introduction
1.1 General

This document describes two modules which can be used to implement application-to-model
communication in the same manner as that undertaken by PEST. Thus the programmer of an
application which must repeatedly run a model, and process its outputs, is relieved of the task
of writing code to implement application-to-model interfacing and the managing of parallel
runs across a computer network.

1.2 PEST-Model Interface

As is documented in the PEST manual, PEST must run a model many times in the course of
estimating parameters for that model. The “model” can be comprised of a single executable
program, or many executable programs encapsulated in a batch or script file. It is required,
however, that the model is capable of being run by PEST through the issuing of a single
command.

On each occasion that a model is run by PEST, the following steps are taken.

1. First PEST writes one or a number of model input files. Parameters cited within these
files are provided with values that PEST wishes the model to employ on that
particular run.

2. The model is then run using a system command.

3. Model outputs of interest (which can occur on one or a number of model output files)
are read by PEST.

The writing of model input files with updated parameter values is accomplished through the
agency of user-supplied templates of these files. In these template files, parameters are named
(each name should be 12 characters or less in length), and the spaces to which their current
values should be written are identified. There is no limit to the number of locations to which
a particular parameter value can be written, nor to the number of parameters that can be
employed in this process.

Model output files are read using instructions. One instruction file should be provided for
each model output file that must be read. Instructions within each of these files direct the
reading of model output files. They also provide names for the model outputs that must be
read; these names must be 20 characters or less in length. These outputs are referred to as
“observations” in PEST parlance. There is no limit to the number of observations which can
be read in this manner. However each observation can only be read once.

For more details of the PEST-to-model interface protocol, see the PEST manual. It should be
noted that programs of the USGS JUPITER suite use this same protocol. However the “ptf”
and “pif” headers to PEST template and instruction files are replaced by “jtf” and “jif”
headers respectively. PEST, as well as the model interface software documented herein, will
accept both of these header types. JUPITER programs, however, will only accept the latter

Introduction 2

header types.

1.3 Parallelisation of Model Runs

Where the values assigned to parameters for one model run do not depend on the results of
the immediately previous model run, great gains in efficiency can be had if packets of model
runs are undertaken in parallel. The Parallel PEST version of PEST implements such run
parallelisation as it fills the Jacobian matrix of observation sensitivities to parameters.
Parameter values pertaining to all model runs which must be undertaken for the purpose of
computing finite-difference-based sensitivities are provided to PEST’s parallel run manager,
which then distributes model runs to computers to which it has access through a network.
One or more “slaves” is run on each of those computers; each of these slaves issues the
command to run the model when it receives the appropriate signal from PEST. It is assumed
that all software and files necessary to run the model are available on each slave machine.
Before commanding a slave to undertake a model run, PEST writes input files pertinent to
that model run across the network; the writing of these files is governed by one or more
template files in the usual manner. After the model run is complete the slave signals PEST of
its completed status. PEST then reads pertinent model output files across the network using
one or a number of instruction files in the usual manner.

PEST’s parallel run manager communicates with slaves through the reading and writing of
short message files written to the directory from which each slave is run. It is assumed that
these directories can be “seen” from the master computer (on which PEST is run) through the
sharing of network drives. The run manager keeps track of which machines can undertake
model runs the fastest, preferentially allocating runs to those machines. If at any time a slave
drops out of the parallelisation process, this condition is detected, and PEST allocates
unfinished or lost model runs to other slaves.

A complete description of PEST’s parallelisation capabilities is provided in the PEST
manual.

1.4 The Modules Documented Herein

Two FORTRAN 90 modules are documented herein for implementation of PEST-type
application-to-model interfacing, and for parallelisation of model runs based on this
interfacing. These are designed to be useable by any program which requires that many
model runs be undertaken in succession with one or more altered inputs in each case, and that
selected outputs of those runs be processed (e.g. for calibration or optimisation purposes).
Using these modules, application-to-model communication and parallelisation of model runs
can be accomplished using a minimum of subroutine calls, leaving the programmer free to
attend to the programming details necessary to implement the algorithm that underpins
his/her particular application. It is thereby hoped that availability of the modules documented
herein will expedite the writing of useful model-based processing software, and promulgate
protocols for implementation of this processing that enhance interchangeability of software.

It is anticipated that the programs documented herein will be improved over time. For
example, it is hoped that an option will soon become available to replace the use of message
files with MPI-based messaging, this allowing faster and sometimes more stable

Introduction 3

communication than can be implemented through the more basic (but more general) message
file protocol.

1.5 Source Code

Source code for the model interface and parallelisation modules is found in files mio.f and
prm.f respectively. Two drivers are provided to demonstrate the use of these modules. These
are provided in files driver1.f and driver2.f; driver1.f USEs only the first of these modules
whereas driver2.f USEs both.

Compilation of both the modules and the drivers can be undertaken with the help of the
provided makefile. As an inspection of the makefile reveals, all source code is first processed
using the CPPP program which provides very basic emulation of certain compiler
preprocessing functionality, normally available through the CPP pre-processor supplied with
many C compilers. Source code for CPPP is also provided. CPPP provides the ability to
select/deselect fragments of code according to whether symbols supplied on its command line
match those supplied with “#ifdef” statements placed within program source code. Selection
of appropriate symbols for use in a particular compilation environment takes place on the
first line of the makefile. This line can be altered according to the platform on which
compilation takes place, and according to idiosyncrasies of a user’s compiler. Extra symbols
can easily be added to the source code (and to the list defined within the makefile) to support
different compilation options if desired.

As specified through makefile directives, pre-processing of mio.f and prm.f using the CPPP
utility produces source code files named mio.f90 and prm.f90 These are then ready for
compilation and linking to a user’s application.

MODEL_INPUT_OUTPUT_INTERFACE 4

2. MODEL_INPUT_OUTPUT_INTERFACE
2.1 General

Source code for the MODEL_INPUT_OUTPUT_INTERFACE module is contained in file
mio.f. With the exception of the subroutines documented below, the contents of this module
are private. Access to this module is enabled through employing the statement:-

USE MODEL_INPUT_OUTPUT_INTERFACE

in any subprogram from which any of these subroutines are called.

Public subroutines are now described in the order in which they are likely to be called in a
program which USEs this module.

Most of the following subroutines include an ifail variable which is returned as positive if an
error condition is encountered. The actual error is described in a text string that can be
obtained using the MIO_GET_MESSAGE_STRING subroutine. The contents of this string
can then be employed by the calling program to report the error.

2.2 Subroutine MIO_INITIALISE

Specifications for subroutine MIO_INITIALISE are as follows.
subroutine mio_initialise(ifail,numin,numout,npar,nobs,precision,decpoint)

 implicit none

 integer, intent(out) :: ifail
 integer, intent(in) :: numin
 integer, intent(in) :: numout
 integer, intent(in) :: npar
 integer, intent(in) :: nobs
 character (len=*), intent(in), optional :: precision
 character (len=*), intent(in), optional :: decpoint

Subroutine MIO_INITIALISE must be called before any other subroutine of the
MODEL_INPUT_OUTPUT_INTERFACE module is called. It provides this module with
information that it requires in order to initialise arrays for storage of its variables.

Arguments are as follows.

Argument Description

IFAIL This is returned as zero unless an error condition is encountered. In this event the
pertinent error message string can be retrieved using the
MIO_GET_MESSAGE_STRING subroutine.

NUMIN NUMIN is the number of template files required for the application-to-model
interface. Each template file is employed to write a different model input file prior to
running the model. NUMIN must be 1 or greater.

MODEL_INPUT_OUTPUT_INTERFACE 5

NUMOUT NUMOUT is the number of instruction files employed in the application-to-model
interface. Each instruction file is used to read a different model output file after the
model has run. NUMOUT must be 1 or greater.

NPAR NPAR is the number of different parameters cited in all model template files. Note
that the same parameter can be cited many different times on one or more template
files. However that parameter is provided with only one value for all of its
occurrences.

NOBS NOBS is the number of different observations read from model output files using
instruction files. These are provided with names through the instructions which read
them.

PRECISION This must be supplied as “single” or “double”. In the former case single precision
protocol is observed in writing numbers to model input files; in the latter case double
precision protocol is observed. In the former case a maximum of 13 spaces is used
to represent a number; in the latter case a maximum of 23 spaces is used to
represent a number. See the PEST manual for more details. Default is “single”.

DECPOINT This must be supplied as “point” or “nopoint”. If it is supplied as “nopoint” parameter
values will be written in a format whereby the decimal point is omitted if possible.
This is useful where parameter spaces in template files are small. See the PEST
manual for more details. Default is “point”.

2.3 Subroutine MIO_PUT_FILE

This subroutine must be called after MIO_INITIALISE and before any other
MODEL_INPUT_OUTPUT_INTERFACE subroutines are called. It is used to inform the
MODEL_INPUT_OUTPUT_INTERFACE module of the names of all template files and
corresponding model input files, and of all instruction files and corresponding model output
files. It must be called 2×NUMIN + 2×NUMOUT times.

Specifications for subroutine MIO_PUT_FILE are as follows.
subroutine mio_put_file(ifail,itype,inum,filename)

 integer, intent(out) :: ifail
 integer, intent(in) :: itype
 integer, intent(in) :: inum
 character (len=*), intent(in) :: filename

Argument descriptions are provided in the table below.

Argument Description

IFAIL This is returned as zero unless an error condition is encountered. In this event the
pertinent error message string can be retrieved using the
MIO_GET_MESSAGE_STRING subroutine.

MODEL_INPUT_OUTPUT_INTERFACE 6

ITYPE The type of file whose name is being supplied:-
1 – template file;
2 – model input file;
3 – instruction file;
4 – model output file.

INUM Each template file must be matched to a model input file; each instruction file must
be matched to a model output file. There are NUMIN pairs of the former and
NUMOUT pairs of the latter. INUM indicates to MIO_PUT_FILE the pair number to
which the supplied filename belongs. INUM must be greater than zero. It can be no
greater than NUMIN if a template or model input filename is supplied, and no
greater than NUMOUT if an instruction or model output filename is supplied.

FILENAME The name of a template file, model input file, instruction file or model output file. The
name of this file must be no greater than 200 characters in length.

2.4 Subroutine MIO_GET_FILE

It is possible that this subroutine will not be called in an application that USEs the
MODEL_INPUT_OUTPUT_INTERFACE module. It is provided for convenience. Its
specifications are as follows.
subroutine mio_get_file(ifail,itype,inum,filename)
 integer, intent(out) :: ifail
 integer, intent(in) :: itype
 integer, intent(in) :: inum
 character (len=*), intent(out) :: filename

The arguments employed by MIO_GET_FILE are the same as those employed by
MIO_PUT_FILE. See the description of that subroutine for details.

2.5 Subroutine MIO_PROCESS_TEMPLATE_FILES

Subroutine MIO_PROCESS_TEMPLATE_FILES must not be called before the names of all
template and model input files are provided to the
MODEL_INPUT_OUTPUT_INTERFACE module through calls to subroutine
MIO_PUT_FILE. It must be called before the first model run is undertaken. It checks all
template files for correctness and consistency. If an error is encountered this is recorded
internally and IFAIL is returned as 1. The error message can be subsequently retrieved using
the MIO_GET _MESSAGE_STRING subroutine.

Subroutine MIO_PROCESS_TEMPLATE_FILES should be called only once by an
application which USEs the MODEL_INPUT_OUTPUT_INTERFACE module.

Specifications are as follows.
subroutine mio_process_template_files(ifail,npar,apar)
 integer, intent(out) :: ifail
 integer, intent(in) :: npar
 character (len=*), dimension(npar) :: apar

Argument descriptions are set out in the table below.

MODEL_INPUT_OUTPUT_INTERFACE 7

Argument Description

IFAIL This is returned as zero unless an error condition is encountered. In this event, the
error message string can be retrieved using the MIO_GET_MESSAGE_STRING
subroutine.

NPAR The number of parameter names supplied through the APAR array.

APAR A character array of NPAR elements containing parameter names. Each name cited
in a template file must be cited in this array. However if this array contains
parameter names that are not cited in any template files, this will not be construed
as an error condition. Parameter names must be 12 characters or less in length.

Note that parameter names must be supplied in lower case.

2.6 Subroutine MIO_STORE_INSTRUCTION_SET

Subroutine MIO_STORE_INSTRUCTION_SET must not be called before the names of all
instruction and corresponding model output files have been provided to the
MODEL_INPUT_OUTPUT_INTERFACE module through calls to subroutine
MIO_PUT_FILE. It must be called before the first model run is undertaken. It checks all
instruction files for correctness and consistency, and stores instructions contained therein in
compressed form for later fast retrieval during the actual reading of model output files. If an
error is encountered this is recorded internally and IFAIL is returned as 1. The error message
can subsequently be retrieved using the GET_MIO_MESSAGE_STRING subroutine.

Subroutine MIO_STORE_INSTRUCTION_SET should be called only once by a program
which USEs the MODEL_INPUT_OUTPUT_INTERFACE module.

Specifications are as follows.
subroutine mio_store_instruction_set(ifail)

 integer, intent(out) :: ifail

The description of its single argument follows.

Argument Description

IFAIL This is returned as zero unless an error condition is encountered. In this event the
pertinent error message string can be retrieved using the
MIO_GET_MESSAGE_STRING subroutine.

2.7 Subroutine MIO_DELETE_OUTPUT_FILES

As is described in the PEST manual, all model output files should be deleted before the
model is run. Thus if the model fails to run, an old model output file will not be mistaken for
the latest one.

MODEL_INPUT_OUTPUT_INTERFACE 8

Its specifications are as follows.
subroutine mio_delete_output_files(ifail,asldir)

 integer, intent(out) :: ifail
 character(*), intent(in), optional :: asldir

Argument descriptions are provided in the table below.

Argument Description

IFAIL This is returned as zero unless an error condition is encountered. In this event the
pertinent error message string can be retrieved using the
MIO_GET_MESSAGE_STRING subroutine.

ASLDIR The name of the subdirectory in which model input files are found. This name is
appended to the front of each model input filename. On a PC it must conclude with
a “\” character and on a UNIX system it must conclude with a “/” character. The
(optional) ASLDIR argument is not normally used. It is employed by the
PARALLEL_RUN_MANAGER module however, in a way that is invisible to the
user.

2.8 Subroutine MIO_WRITE_MODEL_INPUT_FILES

This subroutine should be called prior to every model run. It instructs the
MODEL_INPUT_OUTPUT_INTERFACE module to write a set of model input files in
which parameters are provided with values supplied through one of its arguments. It must not
be called prior to subroutine MIO_PROCESS_TEMPLATE_FILES. However once the latter
is called, MIO_WRITE_MODEL_INPUT_FILES can be called as many times as desired.
Presumably parameter values will be different on each such call.

Specifications are as follows:-
subroutine mio_write_model_input_files(ifail,npar,apar,pval,asldir)

 integer, intent(out) :: ifail
 integer, intent(in) :: npar
 character (len=*), intent(in), dimension(npar) :: apar
 double precision, intent(inout), dimension(npar) :: pval
 character (len=*), intent(in), optional :: asldir

Argument Description

IFAIL This is returned as zero unless an error condition is encountered. In this event the
pertinent error message string can be retrieved using the
MIO_GET_MESSAGE_STRING subroutine.

NPAR The number of parameter names supplied through the APAR array.

MODEL_INPUT_OUTPUT_INTERFACE 9

APAR A character array of NPAR elements containing parameter names. Each name cited
in a template file must be cited in this array. However if this array contains
parameter names that are not cited in any template files, this will not be construed
as an error condition. Parameter names must be 12 characters or less in length.

Parameter names must be supplied in lower case. They need not be supplied in
the same order as in the previous call to subroutine
MIO_PROCESS_TEMPLATE_FILES or in other calls to
MIO_WRITE_MODEL_INPUT FILES. Also, parameter names provided in the
current call to subroutine MIO_WRITE_MODEL_INPUT_FILES can be different
from those employed on other calls to this subroutine, provided no names that occur
on template files are omitted in either case.

PVAL This is an array of parameter values. It is presumed that elements are provided in
the same order as in the APAR array, thus allowing parameter values to be linked to
parameter names.

Like PEST, the MODEL_INPUT_OUTPUT_INTERFACE module may make slight
adjustments to parameter values if they cannot be written to model input files with
the same precision as that with which they are recorded internally by the calling
program. Thus the internal and external representations of these numbers become
identical. (The main program should thus read these values back from the PVAL
array.) This inhibits the occurrence of roundoff errors in finite-difference derivatives
calculation.

ASLDIR The name of the subdirectory in which model input files are found. This name is
appended to the front of each model input filename. On a PC it must conclude with
a “\” character and on a UNIX system it must conclude with a “/” character. The
(optional) ASLDIR argument is not normally used. It is employed by the
PARALLEL_RUN_MANAGER module however, in a way that is invisible to the
user.

2.9 Subroutine MIO_READ_MODEL_OUTPUT_FILES

Subroutine MIO_READ_MODEL_OUTPUT_FILES should be called after every model run.
It reads model output files using the instructions provided in the previously-stored instruction
set. Thus it must only be called after subroutine MIO_STORE_INSTRUCTION_SET has
been called.

Specifications are as follows:-
subroutine
mio_read_model_output_files(ifail,nobs,aobs,obs,instruction,asldir)

 integer, intent(out) :: ifail
 integer, intent(in) :: nobs
 character (len=*), intent(in), dimension(nobs) :: aobs
 double precision, intent(out), dimension(nobs) :: obs
 character (len=*), intent(out) :: instruction
 character (len=*), optional :: asldir

Argument descriptions are presented in the table below.

Argument Description

MODEL_INPUT_OUTPUT_INTERFACE 10

IFAIL This is returned as zero unless an error condition is encountered. In this event
the pertinent error message string can be retrieved using the
MIO_GET_MESSAGE_STRING subroutine. If appropriate, the offending
instruction will be provided in the INSTRUCTION string.

NOBS The number of observation names supplied through the AOBS array.

AOBS A character array of NOBS elements containing observation names. Each name
cited in an instruction file must be cited in this array. Conversely, any name cited
in the AOBS array must be cited in an instruction file. Observation names must
be 20 characters or less in length.

Observation names must be supplied in lower case. They need not be
supplied in the same order as in other calls to
MIO_READ_MODEL_OUTPUT_FILES.

OBS This is an array of observation values read from model output files. It is
presumed that elements are referenced in the same order as for the AOBS
array; it is through this mechanism that observation values are linked to
observation names.

INSTRUCTION If an error condition occurs as a result of an incorrect instruction, or because a
certain instruction is not able to read the expected number from a model output
file, IFAIL is returned as 1. As usual, an error message is recorded, which can
then be retrieved through the MIO_GET_MESSAGE_STRING subroutine. The
offending instruction is recorded in the INSTRUCTION variable. Thus a program
which calls MIO_READ_MODEL_OUTPUT_FILES should check whether the
INSTRUCTION variable is not empty after an error condition is encountered (and
IFAIL is therefore returned as positive). The offending instruction can then be
displayed together with the reason for the error as provided by the
MIO_GET_MESSAGE_STRING subroutine.

ASLDIR The name of the subdirectory in which model output files are found. This name is
appended to the front of each model output filename. On a PC it must conclude
with a “\” character while on a UNIX system it must conclude with a “/” character.
The (optional) ASLDIR argument is not normally used. It is employed by the
PARALLEL_RUN_MANAGER module however, in a way that is invisible to the
user.

2.10 Subroutine MIO_GET_MESSAGE_STRING

If an error condition occurs, as indicated by a positive IFAIL value being returned from a
particular subroutine, the reason for the error will be recorded in a character string which can
be retrieved using the MIO_GET_MESSAGE_STRING subroutine.

Specifications for MIO_GET_MESSAGE_STRING are as follows:-
subroutine mio_get_message_string(ifail,amessage_out)

 integer, intent(out) :: ifail
 character*(*), intent(out) :: amessage_out

MODEL_INPUT_OUTPUT_INTERFACE 11

Arguments are described in the following table.

Argument Description

IFAIL This is returned as zero unless an error condition is encountered.

AMESSAGE_OUT A character variable containing the error message. This message will never
be more than 500 characters in length.

2.11 Subroutine MIO_FINALISE

Subroutine MIO_FINALISE should be called prior to termination of the program which
USEs the MODEL_INPUT_OUTPUT_INTERFACE module. It de-allocates all memory
allocated by this module. Its specifications are as follows.
subroutine mio_finalise(ifail)

 integer, intent(out) :: ifail

The description of its single argument follows.

Argument Description

IFAIL This is returned as zero unless an error condition is encountered. In this event the
pertinent error message string can be retrieved using the
MIO_GET_MESSAGE_STRING subroutine.

2.12 Subroutine MIO_GET_STATUS

Subroutine MIO_GET_STATUS is rarely needed. It is provided as a convenience. Its
specifications are as follows.
subroutine mio_get_status(template_status,instruction_status)

 integer, intent(out) :: template_status
 integer, intent(out) :: instruction_status

MIO_GET_STATUS arguments are described in the following table.

Argument Description

TEMPLATE_STATUS This is returned as 1 if subroutine MIO_PROCESS_TEMPLATE_FILES
has been previously called. Otherwise it is returned as 0.

INSTRUCTION_STATUS This is returned as 1 if subroutine MIO_STORE_INSTRUCTION_SET
has been previously called. Otherwise it is returned as 0.

MODEL_INPUT_OUTPUT_INTERFACE 12

2.13 Subroutine MIO_GET_DIMENSIONS

Subroutine MIO_GET_DIMENSIONS is rarely needed. It is provided as a convenience. Its
specifications are as follows.
subroutine mio_get_dimensions(numinfile,numoutfile)

 integer, intent(out) :: numinfile
 integer, intent(out) :: numoutfile

MIO_GET_DIMENSIONS arguments are described in the following table.

Argument Description

NUMINFILE The number of model input files. This is equivalent to NUMIN as
previously supplied through subroutine MIO_INITIALISE.

NUMOUTFILE The number of model output files. This is equivalent to NUMOUT as
previously supplied through subroutine MIO_INITIALISE.

PARALLEL_RUN_MANAGER 13

3. PARALLEL_RUN_MANAGER
3.1 General

Source code for the PARALLEL_RUN_MANAGER module is found in file prm.f. With the
exception of the subroutines documented below, the contents of this module are private.
Access to this module is enabled through employing the statement:-

USE PARALLEL_RUN_MANAGER

in any subprogram from which any of these subroutines are called.

Public subroutines are described below in the order in which they are likely to be called in a
program which USEs this module. Most of them include an ifail argument; this is returned as
positive if an error condition is encountered. The error is described in one or more text strings
that can be obtained using the PRM_GET_MESSAGE_STRINGS subroutine. If desired,
these strings can be used directly for error reporting by the calling program.

3.2 Interaction with MODEL_INPUT_OUTPUT_INTERFACE Module

The PARALLEL_RUN_MANAGER module USEs the
MODEL_INPUT_OUTPUT_INTERFACE module for all communications with model input
and output files residing in different slave directories. The
MODEL_INPUT_OUTPUT_INTERFACE module should thus be initialised, and certain of
its subroutines called, before the PARALLEL_RUN_MANAGER module is initialized. In
particular, it is the responsibility of the calling program to run the following
MODEL_INPUT_OUTPUT_INTERFACE subroutines before initialising the
PARALLEL_RUN_MANAGER module.

MIO_INITIALISE

MIO_PUT_FILE

MIO_PROCESS_TEMPLATE_FILES

MIO_STORE_INSTRUCTION_SET

It is also the user’s responsibility to run the MIO_FINALISE subroutine when all parallel
runs have been completed.

Note that MIO_PUT_FILE must be run for all template, model input, instruction and model
output files. When calling this subroutine, there is no need to consider the parallelisation of
model runs. Hence the names of all model input and output files are provided to this
subroutine as if they reside on the master machine and no parallelisation is to take place at
all. The PARALLEL_RUN_MANAGER module will construct the names of the model input
files that it will actually write and the model output files that it will actually read when model
runs are undertaken on slave machines by affixing the name of a subdirectory to the front of
the nominated model input and output files. This is assumed to be the same subdirectory as

PARALLEL_RUN_MANAGER 14

that to which it writes message files for pertinent slaves (i.e. the working directory of these
slaves). Note that this convention does not preclude the ability of a model to read/write its
input/output files from/to different subdirectories on each slave machine on which it resides.
Relativity of filenames as seen from each slave machine can still be preserved by proper
definition of model input/output filenames, these names including a path relative to the slave
working directory. The subdirectory name through which a particular set of these different
model input and output files can be distinguished from another set when seen from the master
directory can then be prefixed to these names by the PARALLEL_RUN_MANAGER
module.

3.3 Parallelisation Principles

Parallelisation of model runs is undertaken in the same manner as is undertaken by Parallel
PEST. Thus the program which USEs the PARALLEL_RUN_MANAGER module must
reside on a “master machine” while model runs are conducted on “slave machines”. The
same slaves are employed on these machines as are employed by Parallel PEST. These are
named PSLAVE. They are each run by typing “pslave” at the command-line prompt while
situated within the respective slave working directory. (This will mostly be the same as the
working directory of the model that is run by the respective slave.) Upon commencement of
execution each slave prompts for the command that it must issue in order to run the model. It
then issues this command only when instructed to do so by the
PARALLEL_RUN_MANAGER module residing on the master machine. See the PEST
manual for more details.

When the PARALLEL_RUN_MANAGER module is initialised, it first attempts to
communicate with all nominated slaves. If it cannot find all of them, it commences the
parallelised model run process anyhow, anticipating that missing slaves will appear later. As
they are detected, they are put to work in the carrying out of model runs.

 3.4 Subroutine PRM_INITIALISE

As the name suggests, subroutine PRM_INITIALISE initiates execution of the
PARALLEL_RUN_MANAGER module. It should be called only once. Its specifications are
as follows.
subroutine
prm_initialise(ifail,prm_mr,prm_mf,prm_wk,prm_nr,nslave,maxrun,iwait,repeat
run)

 integer, intent(out) :: ifail
 integer, intent(in) :: prm_mr
 integer, intent(in) :: prm_mf
 integer, intent(in) :: prm_wk
 integer, intent(in) :: prm_nr
 integer, intent(in) :: nslave
 integer, intent(in) :: maxrun
 integer, intent(in) :: iwait
 integer, intent(in) :: repeatrun

The role of each of the arguments employed by PRM_INITIALISE is provided in the
following table.

Argument Description

PARALLEL_RUN_MANAGER 15

IFAIL This is returned as zero unless an error condition is encountered. In this event the
pertinent error message string can be retrieved using the
PRM_GET_MESSAGE_STRINGS subroutine.

PRM_MR The unit number of the parallel run management record file. The
PARALLEL_RUN_MANAGER module writes a record to this file of all
communications between the manager and its slaves. This file should be open
prior to calling subroutine PRM_INITIALISE.

PRM_MF A unit number that module PARALLEL_RUN_MANAGER can use for work files.
This unit number should not be employed for any purpose in the calling
program.

PRM_WK A unit number that module PARALLEL_RUN_MANAGER can use for work files.
This unit number should not be employed for any purpose in the calling
program.

PRM_NR If supplied with a positive value, the PARALLEL_RUN_MANAGER module
records the completion of each requested run to a file with this unit number. If
required (i.e. if PRM_NR is positive), the file should be opened by the calling
program before subroutine PRM_INITIALISE is called.

NSLAVE The number of slaves to which the PARALLEL_RUN_MANAGER module has
access.

MAXRUN The maximum number of runs that will ever be required in any parallelised run
package.

IWAIT The PARALLEL_RUN_MANAGER module undertakes periodic strategic pauses
in communications with slave machines in order to avoid the crossing of operating
system messages regarding the status of files which are handled by the module
(including message files and model input/output files). IWAIT is the length of each
such strategic stoppage in one hundredths of a second. A value of 20 is
suggested; however this should be increased if “file access” errors are
encountered.

REPEATRUN If a model output file cannot be read, the PARALLEL_RUN_MANAGER module
will immediately cease execution with an appropriate error message if
REPEATRUN is set to 0. If it is set to 1 however, three attempts will be made to
repeat the model run which caused the problem – possibly on different slave
machines - before an error condition is reported.

3.5 Subroutine PRM_SLAVEDAT

A program which USEs the PARALLEL_RUN_MANAGER module supplies this module
with information about the slaves to which it has access through the PRM_SLAVEDAT
subroutine. This must be called after the PRM_INITIALISE subroutine and before any other
subroutines of the PARALLEL_RUN_MANAGER module are called. It must be called once
for each slave.

PRM_SLAVEDAT will report an error condition if calls have not been made in the main

PARALLEL_RUN_MANAGER 16

program to subroutines MIO_PROCESS_TEMPLATE_FILES and
MIO_STORE_INSTRUCTION_SET. Thus PRM_SLAVEDAT expects to find that all data
input and checking required by the MODEL_INPUT_OUTPUT_INTERFACE module has
been performed.

Specifications for subroutine PRM_SLAVEDAT are as follows.
 subroutine prm_slavedat(ifail,islave,iruntme,aslave,asldir)

 integer, intent(out) :: ifail
 integer, intent(in) :: islave
 integer, intent(in) :: iruntme
 character (len=*), intent(in) :: aslave
 character (len=*), intent(in) :: asldir

The role of each of its arguments is set out in the following table.

Argument Description

IFAIL This is returned as zero unless an error condition is encountered. In this event, the
pertinent error message string(s) can be retrieved using the
PRM_GET_MESSAGE_STRINGS subroutine.

ISLAVE The slave number for which information is supplied through the current
PRM_SLAVEDAT call.

IRUNTME The expected model run time on the nominated slave machine in seconds. It is best
to err on the side of long run times when supplying this variable; see below.

ASLAVE The name of a slave. This can be any string of up to 35 characters in length.

ASLDIR The working directory of the slave machine as seen from the master machine. If
working on a PC this must end in “\”; if working on a UNIX machine it must end in
“/”. This name is prefixed to the names of all model input files and all model output
files as supplied through calls to the MIO_PUT_FILE subroutine when
writing/reading model data for this particular slave. It is also prefixed to the names
of all message files used for communication with the nominated slave.

3.6 Subroutine PRM_SLAVETEST

Subroutine PRM_SLAVETEST must not be called until information is provided for all slaves
through a series of PRM_SLAVEDAT calls. However it must be called before any calls are
made to the PRM_DORUNS subroutine. PRM_SLAVETEST ensures that the
PARALLEL_RUN_MANAGER module can write to all slave working directories and read
data from those same directories. It then tests for the presence of all slaves. If no slaves are
found it reports an error condition to the calling program.

Specifications for subroutine PRM_SLAVETEST are as follows.
 subroutine prm_slavetest(ifail)

 integer, intent(out) :: ifail

A description of its single argument is provided in the following table.

PARALLEL_RUN_MANAGER 17

Argument Description

IFAIL This is returned as a positive number if an error condition is encountered. The error
message string(s) can then be retrieved using the
PRM_GET_MESSAGE_STRINGS subroutine.

IFAIL is returned as a negative number if program stoppage has been activated
through the presence of a pest.stp file. In this case it returns -1 if the integer
present in file pest.stp is 1, or -2 if the integer recorded in file pest.stp is 2. See
below for more information on stopping and starting.

In all other cases a value of zero is returned for IFAIL.

3.7 Subroutine PRM_DORUNS

This is the work-horse of the PARALLEL_RUN_MANAGER module. It dispatches a set of
model runs to its slaves, and monitors the completion of those runs. In the meantime if any
absent slaves appear, these are immediately put to work. If excessive model run times
indicate that one or more slaves have disappeared, it re-assigns pertinent model runs to
different slaves. When all allocated model runs are complete, it returns control to the calling
program.

Specifications for subroutine PRM_DORUNS are as follows.
subroutine prm_doruns(ifail,itn,npar,nobs,nrun,pregdim,pobsdim,parreg,
 obsreg,apar,aobs,irestart,restartfile)

 integer, intent(out) :: ifail
 integer, intent(in) :: itn
 integer, intent(in) :: npar
 integer, intent(in) :: nobs
 integer, intent(in) :: nrun
 integer, intent(in) :: pregdim
 integer, intent(in) :: pobsdim

 double precision, intent(inout) :: parreg(pregdim,nrun)
 double precision, intent(inout) :: obsreg(pobsdim,nrun)

 character (len=*), intent(in) :: apar(npar)
 character (len=*), intent(in) :: aobs(nobs)

 integer, intent(inout), optional :: irestart
 character (len=*), intent(in), optional :: restartfile

Argument details are provided in the following table.

Argument Description

PARALLEL_RUN_MANAGER 18

IFAIL This is returned as a positive number if an error condition is encountered. The
error message string(s) can then be retrieved using the
PRM_GET_MESSAGE_STRINGS subroutine.

It is returned as a negative number if program stoppage has been activated
through the presence of a pest.stp file. In this case it returns -1 if the integer
present in file pest.stp is 1, or -2 if the integer recorded in file pest.stp is 2. See
below for more information on stopping and starting.

In all other cases it returns a value of zero.

ITN The parallel run package number. This number is recorded in the run record file
written by the PARALLEL_RUN_MANAGER package.

NPAR The number of entries in the APAR array.

NOBS The number of entries in the AOBS array.

NRUNS The number of model runs comprising the current parallel run package.

PREGDIM Leading dimension of the PARREG array.

POBSDIM Leading dimension of the OBSREG array.

PARREG Each column of this matrix contains parameter values to be used on a particular
parallel run. These must be supplied in the same order as parameter names in the
APAR array. If more parameters are named than are featured in template files for
the current problem, their values are simply ignored.

Like PEST, the PARALLEL_RUN_MANAGER module may make slight
adjustments to parameter values if they cannot be written to model input files with
the same precision as that with which they are stored internally by the calling
program in order that the internal and external representations of these numbers
thereby become identical. The main program should thus read these values back
from the PARREG array. This suppresses roundoff errors in finite-difference
derivatives calculation.

OBSREG Each column of this matrix is filled with observation values read from model output
files written on a particular parallel run. The ordering of observations is the same
as that in which observation names are supplied in the AOBS array. The ordering
of columns in this array (each pertaining to a separate model run) is the same as
the ordering of model runs supplied in the PARREG array. Thus parameter values
in the latter array and observation values in the former array are linked by column
number.

If an observation name is supplied in the AOBS array and an instruction has not
been provided to read that observation, an error condition is decreed to have
occurred.

APAR Parameter names. Each parameter name must be 12 characters or less in length.
Any parameter that is cited in any template file whose name was previously
provided to the MODEL_INPUT_OUTPUT_INTERFACE module by the main
program must be named in this array. All parameter names must be provided in
lower case.

PARALLEL_RUN_MANAGER 19

AOBS Observation names. Each observation name provided in this array must be cited
in an instruction file whose name was provided to the
MODEL_INPUT_OUTPUT_INTERFACE module by the main program. All
observation names must be provided in lower case.

IRESTART This should be supplied as 1 if a restart file is to be written based on the current
parallel run package. It should be supplied as 2 if the current parallel run package
should retrieve whatever results are available from an existing restart file, and then
undertake the remainder of the model runs requested by the package. (In this
case the PARALLEL_RUN_MANAGER module will continue to store run results in
a restart file as continuation of the parallel run process takes place). In either of
these cases the name of the restart file should be provided through the
RESTARTFILE variable. Alternatively, if no restart data storage or retrieval is
wanted, IRESTART should be supplied as zero, or simply omitted.

If IRESTART is provided as 2, it is returned as 1 to prevent restart data from being
read when the next parallel run package is requested.

Immediately after subroutine DO_RUNS reads restart data, it appends information
to the restart file pertaining to new model runs so that the file is available for
subsequent restarts, in accordance with the revised IRESTART setting of 1.

RESTARTFILE The name of the binary restart file. This is only required if IRESTART is supplied
as 1 or 2.

3.8 Subroutine PRM_GET_MESSAGE_STRINGS

If an error condition is encountered on a call to any PARALLEL_RUN_MANAGER
subroutine, a text string (or multiple strings) describing the error can be retrieved through the
PRM_GET_MESSAGE_STRINGS subroutine. These can then be used in formulation of an
error message by the calling program. Note that if more than one message string must be
retrieved for description of an error message, each of these strings should commence on a
new line when that error message is displayed by the calling program.

Specifications for subroutine PRM_GET_MESSAGE_STRINGS are as follows:-
 subroutine prm_get_message_strings(ifail,numused,amessage,suppl_amessage)

 integer, intent(out) :: ifail
 integer, intent(out) :: numused
 character (len=*), intent(out) :: amessage
 character (len=*), dimension(:),intent(out) :: suppl_amessage

Subroutine argument details are provided in the following table.

Argument Description

IFAIL This is returned as 1 if an error condition is encountered.

PARALLEL_RUN_MANAGER 20

NUMUSED The number of error message strings required for the current message. If
NUMUSED is returned as 1 (as is normally the case) then the entire error
message is provided in the AMESSAGE string. If it is returned as 2, then the
error message is supplied in two parts, the first being in the AMESSAGE
string and the second being in the first element of the
SUPPL_AMESSSAGE string array. If it is returned as 3, then AMESSAGE
and both strings comprising the SUPPL_AMESSAGE array contain error
message strings.

AMESSAGE Error message string. This will never need to be more than 500 characters
in length.

SUPPL_AMESSAGE Two supplementary error message strings. They will never need to be more
than 500 characters in length.

3.9 Subroutine PRM_SLAVESTOP

This subroutine writes a message file to all slave working directories, instructing each slave
to cease execution. Thus the user does not need to shut down these slaves him/herself.

Specifications are as follows:-
 subroutine prm_slavestop(ifail)

Details of the single PRM_SLAVESTOP argument are provided in the following table.

Argument Description

IFAIL IFAIL is returned as non-zero only if an error condition is encountered. A
description of the error can then be obtained through a call to subroutine
PRM_GET_MESSAGE_STRINGS.

3.10 Subroutine PRM_FINALISE

This subroutine should be the final call made to any subroutine of the
PARALLEL_RUN_MANAGER module by the calling program. All arrays employed by the
PARALLEL_RUN_MANAGER module are deallocated in this subroutine.

Specifications are as follows.
 subroutine prm_finalise(ifail)

Details of the single PRM_FINALISE argument are provided in the following table.

Argument Description

PARALLEL_RUN_MANAGER 21

IFAIL IFAIL is returned as non-zero only if an error condition is encountered. A
description of the error can then be ascertained through a call to subroutine
PRM_GET_MESSAGE_STRINGS.

3.11 The Parallel Run Management Record File

The PARALLEL_RUN_MANAGER module writes a record of all communications between
it and its slaves to a file whose unit number is provided by the user through subroutine
PRM_INITIALISE. This file must have been opened by the main program prior to the calling
of subroutine PRM_INITIALISE. It is also the responsibility of the main program to close
this file after it has ceased using the PARALLEL_RUN_MANAGER module.

3.12 Model Run Times

The PARALLEL_RUN_MANAGER module keeps track of the time that is required for the
model to run on different slave machines. Runs are allocated preferentially to the fastest
available slave. Furthermore, if the module finds that it is waiting for a model run to finish
for a significantly longer time that that which it is expected to take, the
PARALLEL_RUN_MANAGER module will presume that the slave has been lost, and will
re-allocate the lost run to a different slave.

Before any model runs have actually been undertaken the PARALLEL_RUN_MANAGER
module must rely on user estimates of model run times supplied through the
PRM_SLAVEDAT subroutine in order to make run allocation (and possibly run re-
allocation) decisions. An undesirable consequence of supplying model run times which are
too low, is that the run manager may decide that a run is overdue when it isn’t actually
overdue at all. The run may then be re-commenced on a spare machine. That machine will
not be available to undertake any further model runs (even if separate parallel run packages
are initiated on later PRM_DORUNS calls) until that run is finished. This may result in
unnecessary delays in overall parallel run processing. Hence it is best to over-estimate rather
than under-estimate model run times when supplying them to the PRM_SLAVEDAT
subroutine.

(Note that as soon as the first model run has been completed, the
PARALLEL_RUN_MANAGER module updates estimates of all model run times, using a
correction factor which relates estimated time to actual time required to complete this first
model run.)

3.13 Stopping and Pausing

Like PEST, the PARALLEL_RUN_MANAGER module periodically checks for the presence
of a file named pest.stp. As recorded in the PEST manual, this file should contain only a
single entry. An entry of 1 or 2 constitutes a message to cease execution immediately
(respectively with or without a statistical printout in the case of PEST). An entry of 3 is an
instruction to pause execution, while an entry of 4 constitutes an instruction to re-commence
paused execution. This file can be written using a text editor, or by another program. It can

PARALLEL_RUN_MANAGER 22

also be written using the PSTOP, PSTOPST, PPAUSE and PUNPAUSE utilities provided
with PEST.

Both of subroutines PRM_SLAVETEST and PRM_DORUNS check continuously for the
presence of file pest.stp. If this file is found, the response of the
PARALLEL_RUN_MANAGER is as follows.

If the integer contained in pest.stp is 3, then the module will simply pause execution, taking
no further action until pest.stp is re-written with a 4 replacing the 3. Then it will resume
execution as if nothing had happened. (Model runs are unaffected however.)

If the integer contained in pest.stp is 1 or 2, then execution of subroutine PRM_SLAVETEST
or PRM_DORUNS is immediately halted and control is returned to the main program.
(Models will continue to run on slave machines until they reach their natural completion;
however the results will not be read by the PARALLEL_RUN_MANAGER module.) The
IFAIL value returned by the pertinent PARALLEL_RUN_MANAGER subroutine will be -1
or -2, for pest.stp entries of 1 or 2 respectively. The calling program can undertake whatever
action it wishes on the basis of these returned values. Note that no message string is written
when subroutine execution is terminated in this manner.

3.14 Restarting

If directed to do so through the IRESTART variable, subroutine PRM_DORUNS will store
elements of the OBSREG array to a binary file as they are filled on completion of successive
model runs. If execution of the PARALLEL_RUN_MANAGER module is halted
prematurely (for example using the PSTOP or PSTOPST commands, or by simply pressing
Ctl-C), retrieval of the contents of this file will obviate the need for already-completed model
runs to be undertaken again. Instead, on re-commencement of execution, the outcomes of
these runs can simply be read from the restart file, and yet-to-be-completed runs commenced
as if nothing had happened; this functionality is activated by setting IRESTART to 2 on the
first call to PRM_DORUNS made by the application that USEs the
PARALLEL_RUN_MANAGER module.

Caution should be exercised in restarting parallel run execution in this fashion.
PRM_DORUNS will not restart a parallel run package unless the parallel run package
number provided through its ITN argument agrees with that recorded in the restart file. If this
condition is not met, it returns control to the main program with IFAIL set to 1, and with a
description of this condition recorded in its error message string.

It follows that if a program that calls the PARALLEL_RUN_MANAGER module wishes to
take advantage of restart functionality provided by this module, it must keep track of where
in its own operations a previous run interruption occurred. This means that it must store in its
own restart file the “state-of-play” of its own algorithm up to that point of processing at
which the previous package of parallel model runs had been completed. Upon restart, it
should be capable of returning to exactly that point of its own processing sequence before
issuing the same call to PRM_DORUNS, with the same ITN argument, as that which it
employed when parallel run management was prematurely halted on its previous run.

Two Drivers 23

4. Two Drivers
4.1 General

Two drivers have been provided which illustrate the use of the
MODEL_INPUT_OUTPUT_INTERFACE and PARALLEL_RUN_MANAGER modules.
Source code for these drivers is in files driver1.f and driver2.f respectively. See the makefile
for compilation details. As for the above two modules, preprocessing of the driver1.f and
driver2.f files by the CPPP utility is first required in order to produce files driver1.f90 and
driver2.f90 which are ready for compilation.

Each of these programs is now described in detail. Note that these programs are provided for
demonstration purposes only. Error checking and other functionality provided in each of
them is limited.

4.2 The DRIVER1 Utility

DRIVER1 undertakes a series of model runs using parameter values supplied by the user. It
USEs only the MODEL_INPUT_OUTPUT_INTERFACE module, and therefore does not
undertake parallelised model runs. Its execution is initiated by typing the command “driver1”
at the screen prompt. It then prompts for the name of an input file and for the name of an
output file.

A typical DRIVER1 input file is illustrated below.

Two Drivers 24

* control data
5 19
2 3
* parameter data
ro1 4.0
ro2 10.0
ro3 1.0
h1 1.5
h2 10.0
* observation data
ar1
ar2
ar3
ar4
ar5
ar6
ar7
ar8
ar9
ar10
ar11
ar12
ar13
ar14
ar15
ar16
ar17
ar18
ar19
* model command line
ves
* model input/output
ves1.tpl a_model.in1
ves2.tpl a_model.in2
ves1.ins a_model.ot1
ves2.ins a_model.ot2
ves3.ins a_model.ot3

A DRIVER1 input file.

Like the PEST control file, the DRIVER1 input file is divided into sections. Each section is
identified by its name preceded by a “*” character and a space.

The “control data” section contains two lines, each of which contains two variables. The two
variables on the first line are NPAR and NOBS, the number of parameters and observations
respectively featured in this file. The next line contains the variables NUMIN and
NUMOUT, the number of template and instruction files respectively featured in this file.

The “parameter data” section contains NPAR data lines. Each line contains two entries, the
first being a parameter name, the second being the value of the parameter.

The “observation data” section contains NOBS data lines each containing one entry, this
being the name of an observation.

The “model command line” section contains one data line, this being the command which
DRIVER1 must use to run a model through a system call.

The “model input/output” section contains NUMIN+NUMOUT lines, each containing two
entries. For the first NUMIN lines these entries are comprised of the name of a template file

Two Drivers 25

followed by the name of the corresponding model input file. The last NUMOUT lines are
comprised of the name of an instruction file followed by the name of a model output file
which is read using that instruction file.

Execution of DRIVER1 is initiated by typing its name at the command line. The name of its
input file, as well as that of an output file which it must write, should be supplied in response
to its prompts. After it has issued these prompts and received the filenames which it requires,
DRIVER1 writes some information pertaining to its input dataset to the screen as it
processes, and then queries, this dataset using various
MODEL_INPUT_OUTPUT_INTERFACE module subroutines. It then writes all cited model
input files using corresponding template files and supplied parameter values. Next it runs the
model. When the model has finished execution DRIVER1 reads all model output files,
listing the values read therefrom to its own output file. This file can be inspected using a text
editor.

A DRIVER1 input file named driver1.dat has been supplied. Template and instruction files
cited in this file are also supplied. So too is a “model” named VES required for the running of
this example. Source code is provided in file ves.f, while ves.exe is a PC executable version
of this program. (VES computes apparent resistivities over a layered earth at multiple
electrode separations.)

4.3 The DRIVER2 Utility

DRIVER2 USE’s both the MODEL_INPUT_OUTPUT_INTERFACE and
PARALLEL_RUN_MANAGER modules.

The operation of DRIVER2 is not unlike that of DRIVER1. However model runs are
undertaken in parallel.

Execution of DRIVER2 is initiated by typing its name at the screen prompt. Immediately
upon commencement of execution it prompts for the name of an input file. This file is
identical to that of the DRIVER1 input file except for the fact that parameter values are not
cited after parameter names in the “parameter data” section of this file; only parameter names
are required.

Next DRIVER2 prompts for the name of a run management file. This file has the same
format as that of the PEST run manager file. An example of such a file is provided below.
prf
2 0 0.2 0 0
Slave_1 .\test1\
Slave_2 .\test2\
2 2

A run management file used by the DRIVER2 utility.

The first line of the DRIVER2 run management file must contain the string “prf”. The next
line must contain 5 entries, all but the third being integers. The first entry is NSLAVE, the
number of slaves involved in parallel run management. The next is the PEST IFLETYP
variable (which is required to be zero when read by DRIVER1). The third is the strategic
waiting time in seconds used in stabilising the parallel run management process. (This is
multiplied by 100 for computation of the IWAIT variable used by the

Two Drivers 26

PARALLEL_RUN_MANAGER module.) The integer PARLAM variable following that is
ignored by the PARALLEL_RUN_MANAGER module. Then follows the REPEATRUN
variable, which should be set to 1 or 0.

Then follow NSLAVE lines, each of which must possess two entries. The first is the name of
a slave (ASLAVE) while the second is the name of the working directory (ASLDIR) for that
slave. Following that is a line containing NSLAVE integer entries, these being expected
model run times (in seconds) for all slaves.

After having read the run management file, DRIVER2 checks for the presence of all slaves.
Once it has verified that at least one slave is alive and well, it prompts:-
 How many run packages do you wish to implement?

Respond to this with an appropriate integer. For each run package, DRIVER2 then asks:-
 Enter name of parameter value file for run package npackage:

where npackage in the above prompt is the package number. An example parameter value
file is depicted below.
5
ro1 4.0 1.0 40.0 20.0 1.0
ro2 10.0 2.0 1.0 20.0 1.0e-2
ro3 1.0 1.0 20.0 20.0 1.0
h1 1.5 2.0 1.0 10.0 5.0
h2 10.0 2.0 1.0 10.0 2.0

Parameter value file used by DRIVER2.

The first line of the DRIVER 2 parameter value file contains the number of model runs
required in this run package (i.e. NRUN). Then must follow a line of data for each parameter
listed in the DRIVER2 global input file. Each of these lines must contain NRUN+1 entries.
The first entry is the parameter name. Then, in each case, must follow NRUN values for that
parameter. Note that parameter names in the parameter value file must be supplied in the
same order as in the DRIVER2 main input file.

DRIVER2 then prompts:-
 Enter name for observation output file for run package npackage:

in response to which a suitable output file should be named. DRIVER2 then supervises slaves
as they carry out the requested model runs. When these runs are complete, DRIVER2 writes
model outputs corresponding to the different parameter sets to the nominated output file.

The above process is repeated for each user-requested run package.

A DRIVER2 input file named driver2.dat is supplied. So too is a run management file named
driver2.rmf. Three parameter value files named parval_1.dat, parval_2.dat and parval_3.dat
are also supplied. DRIVER2 records run management details to the run management record
file driver2.rmr. A list of completed runs is written to model.runs.

DRIVER2 also includes basic restart functionality. This is activated by starting it with the
“/r” command-line switch. For restarting functionality to work, DRIVER2 must have been
halted during implementation of its first run package during its previous execution. If, on its
restarted run, it is provided with the name of the same parameter value file for its first run

Two Drivers 27

package as that provided for its previous interrupted run, it will read the results of already-
completed model runs from its restart file (named driver2.res) and then complete the
remaining runs required of that package.

